The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Degree-continuous graphs

John GimbelPing Zhang — 2001

Czechoslovak Mathematical Journal

A graph G is degree-continuous if the degrees of every two adjacent vertices of G differ by at most 1. A finite nonempty set S of integers is convex if k S for every integer k with min ( S ) k max ( S ) . It is shown that for all integers r > 0 and s 0 and a convex set S with min ( S ) = r and max ( S ) = r + s , there exists a connected degree-continuous graph G with the degree set S and diameter 2 s + 2 . The minimum order of a degree-continuous graph with a prescribed degree set is studied. Furthermore, it is shown that for every graph G and convex set S of...

On subgraphs without large components

Glenn G. ChappellJohn Gimbel — 2017

Mathematica Bohemica

We consider, for a positive integer k , induced subgraphs in which each component has order at most k . Such a subgraph is said to be k -divided. We show that finding large induced subgraphs with this property is NP-complete. We also consider a related graph-coloring problem: how many colors are required in a vertex coloring in which each color class induces a k -divided subgraph. We show that the problem of determining whether some given number of colors suffice is NP-complete, even for 2 -coloring...

Page 1

Download Results (CSV)