On subgraphs without large components
Glenn G. Chappell; John Gimbel
Mathematica Bohemica (2017)
- Volume: 142, Issue: 1, page 85-111
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topChappell, Glenn G., and Gimbel, John. "On subgraphs without large components." Mathematica Bohemica 142.1 (2017): 85-111. <http://eudml.org/doc/287903>.
@article{Chappell2017,
abstract = {We consider, for a positive integer $k$, induced subgraphs in which each component has order at most $k$. Such a subgraph is said to be $k$-divided. We show that finding large induced subgraphs with this property is NP-complete. We also consider a related graph-coloring problem: how many colors are required in a vertex coloring in which each color class induces a $k$-divided subgraph. We show that the problem of determining whether some given number of colors suffice is NP-complete, even for $2$-coloring a planar triangle-free graph. Lastly, we consider Ramsey-type problems where graphs or their complements with large enough order must contain a large $k$-divided subgraph. We study the asymptotic behavior of “$k$-divided Ramsey numbers”. We conclude by mentioning a number of open problems.},
author = {Chappell, Glenn G., Gimbel, John},
journal = {Mathematica Bohemica},
keywords = {component; independence; graph coloring; Ramsey number},
language = {eng},
number = {1},
pages = {85-111},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On subgraphs without large components},
url = {http://eudml.org/doc/287903},
volume = {142},
year = {2017},
}
TY - JOUR
AU - Chappell, Glenn G.
AU - Gimbel, John
TI - On subgraphs without large components
JO - Mathematica Bohemica
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 142
IS - 1
SP - 85
EP - 111
AB - We consider, for a positive integer $k$, induced subgraphs in which each component has order at most $k$. Such a subgraph is said to be $k$-divided. We show that finding large induced subgraphs with this property is NP-complete. We also consider a related graph-coloring problem: how many colors are required in a vertex coloring in which each color class induces a $k$-divided subgraph. We show that the problem of determining whether some given number of colors suffice is NP-complete, even for $2$-coloring a planar triangle-free graph. Lastly, we consider Ramsey-type problems where graphs or their complements with large enough order must contain a large $k$-divided subgraph. We study the asymptotic behavior of “$k$-divided Ramsey numbers”. We conclude by mentioning a number of open problems.
LA - eng
KW - component; independence; graph coloring; Ramsey number
UR - http://eudml.org/doc/287903
ER -
References
top- Albertson, M., Open Problem 2, The Theory and Applications of Graphs. Proc. 4th Int. Conf., Kalamazoo, 1980 (1981), John Wiley & Sons, New York. (1981) Zbl0459.00006MR0634511
- Alon, N., Ding, G., Oporowski, B., Vertigan, D., 10.1016/S0095-8956(02)00006-0, J. Comb. Theory, Ser. B 87 (2003), 231-243. (2003) Zbl1023.05045MR1957474DOI10.1016/S0095-8956(02)00006-0
- Berke, R., Coloring and Transversals of Graphs. Ph.D. thesis, ETH, Zurich (2008). (2008)
- Boesch, F., Tindell, R., 10.1002/jgt.3190080406, J. Graph Theory 8 (1984), 487-499. (1984) Zbl0549.05048MR0766498DOI10.1002/jgt.3190080406
- Burr, S. A., 10.1002/jgt.3190070108, J. Graph Theory 7 (1983), 57-69. (1983) Zbl0513.05041MR0693021DOI10.1002/jgt.3190070108
- Burr, S. A., Erdős, P., Faudree, R. J., Schelp, R. H., On the difference between consecutive Ramsey numbers, Util. Math. 35 (1989), 115-118. (1989) Zbl0678.05039MR0992396
- Chappell, G. G., GraphR [computer software]. August 26, 2016, Available at https://www.cs.uaf.edu/users/chappell/public_html/papers/graphr/.
- Chappell, G. G., Gimbel, J., On defective Ramsey numbers, Avaible at https://www.cs.uaf.edu/users/chappell/public_html/papers/defram/.
- Chartrand, G., Lesniak, L., Zhang, P., Graphs & Digraphs, CRC Press, Boca Raton (2011). (2011) Zbl1211.05001MR2766107
- Cockayne, E. J., Mynhardt, C. M., 10.7151/dmgt.1088, Discuss. Math., Graph Theory 19 (1999), 93-110. (1999) Zbl0932.05061MR1704453DOI10.7151/dmgt.1088
- Cowen, L. J., Cowen, R. H., Woodall, D. R., 10.1002/jgt.3190100207, J. Graph Theory 10 (1986), 187-195. (1986) Zbl0596.05024MR0890224DOI10.1002/jgt.3190100207
- Cowen, L., Goddard, W., Jesurum, C. E., 10.1002/(SICI)1097-0118(199703)24, J. Graph Theory 24 (1997), 205-219. (1997) Zbl0877.05019MR1431666DOI10.1002/(SICI)1097-0118(199703)24
- Eaton, N., Hull, T., Defective list colorings of planar graphs, Bull. Inst. Combin. Appl. 25 (1999), 79-87. (1999) Zbl0916.05026MR1668108
- Ekim, T., Gimbel, J., 10.1007/s00373-011-1111-5, Graphs Combin. 29 (2013), 213-224. (2013) Zbl1263.05028MR3027597DOI10.1007/s00373-011-1111-5
- Era, H., Urabe, M., On the -independent sets of graphs, Proc. Fac. Sci. Tokai Univ. 26 (1991), 1-4. (1991) Zbl0752.05032MR1148560
- Erdős, P., 10.1090/S0002-9904-1947-08785-1, Bull. Am. Math. Soc. 53 (1947), 292-294. (1947) Zbl0032.19203MR0019911DOI10.1090/S0002-9904-1947-08785-1
- Erdős, P., Szekeres, G., A combinatorial problem in geometry, Compos. Math. 2 (1935), 463-470. (1935) Zbl0012.27010MR1556929
- Esperet, L., Joret, G., 10.1017/S0963548314000170, Comb. Probab. Comput. 23 (2014), 551-570. (2014) Zbl06325560MR3217360DOI10.1017/S0963548314000170
- Esperet, L., Ochem, P., 10.1137/140957883, SIAM J. Discrete Math. 30 (2016), 206-219. (2016) Zbl1329.05105MR3455135DOI10.1137/140957883
- Farrugia, A., Vertex-partitioning into fixed additive induced-hereditary properties is NP-hard, Electron. J. Comb. 11 (2004), research paper R46, 9 pages. (2004) Zbl1053.05046MR2097312
- Fink, J. F., Jacobson, M. S., On -domination, -dependence and forbidden subgraphs, Graph Theory with Applications to Algorithms and Computer Science. Proc. 5th Quadr. Int. Conf. on the Theory and Applications of Graphs with special emphasis on Algorithms and Computer Science Applications, Kalamazoo, 1984 (Y. Alavi et al., eds.) Wiley-Interscience Publication, John Wiley & Sons, New York (1985), 301-311. (1985) Zbl0573.05050MR0812672
- Garey, M. R., Johnson, D. S., 10.1137/0132071, SIAM J. Appl. Math. 32 (1977), 826-834. (1977) Zbl0396.05009MR0443426DOI10.1137/0132071
- Garey, M. R., Johnson, D. S., Stockmeyer, L., 10.1016/0304-3975(76)90059-1, Theor. Comput. Sci. 1 (1976), 237-267. (1976) Zbl0338.05120MR0411240DOI10.1016/0304-3975(76)90059-1
- Gimbel, J., Hartman, C., 10.1016/S0012-365X(03)00177-8, Discrete Math. 272 (2003), 139-154. (2003) Zbl1028.05032MR2009539DOI10.1016/S0012-365X(03)00177-8
- Grötzsch, H., Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math.-Natur. Reihe 8 (1959), 109-120. (1959) Zbl0089.39506MR0116320
- Haxell, P., Szabó, T., Tardos, G., 10.1016/S0095-8956(03)00031-5, J. Comb. Theory, Ser. B 88 (2003), 281-297. (2003) Zbl1033.05083MR1983359DOI10.1016/S0095-8956(03)00031-5
- Kleinberg, J., Motwani, R., Raghavan, P., Venkatasubramanian, S., Storage management for evolving databases, Proc. 38th IEEE Symposium on Foundations of Computer Science (FOCS 97) (1997), 353-362. (1997)
- Linial, N., Matoušek, J., Sheffet, O., Tardos, G., 10.1017/S0963548308009140, Comb. Probab. Comput. 17 (2008), 577-589. (2008) Zbl1171.05021MR2433942DOI10.1017/S0963548308009140
- Lortz, R., Mengersen, I., 10.1007/BF03322761, Result. Math. 41 (2002), 140-149. (2002) Zbl1009.05100MR1888725DOI10.1007/BF03322761
- Lovász, L., On decomposition of graphs, Stud. Sci. Math. Hung. 1 (1966), 237-238. (1966) Zbl0151.33401MR0202630
- Matoušek, J., Přívětivý, A., 10.1137/070684112, SIAM J. Discrete Math. 22 (2008), 295-311. (2008) Zbl1159.05021MR2383243DOI10.1137/070684112
- Nešetřil, J., Rapaud, A., Sopena, E., 10.1016/S0012-365X(96)00198-7, Discrete Math. 165/166 (1997), 519-530. (1997) Zbl0873.05042MR1439297DOI10.1016/S0012-365X(96)00198-7
- Radziszowski, S. P., Small Ramsey numbers. Revision # 14: January 12, 2014, Electron. J. Comb. DS1, Dynamic Surveys (electronic only) (1996), 94 pages. (1996) Zbl0953.05048MR1670625
- Thomassen, C., 10.1006/jctb.1993.1057, J. Comb. Theory, Ser. B 59 (1993), 89-105. (1993) Zbl0794.05026MR1234386DOI10.1006/jctb.1993.1057
- Thomassen, C., 10.1016/S0095-8956(03)00029-7, J. Comb. Theory, Ser. B 88 (2003), 189-192. (2003) Zbl1025.05022MR1974149DOI10.1016/S0095-8956(03)00029-7
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.