A note on Lebesgue type decomposition for covariant completely positive maps on -algebras.
In this paper, we prove a covariant version of the Stinespring theorem for Hilbert C*-modules. Also, we show that there is a bijective correspondence between operator valued completely positive maps, (u′, u)-covariant with respect to the dynamical system (G, η, X) on Hilbert C*-modules and (u′, u)-covariant operator valued completely positive maps on the crossed product G ×η X of X by η.
We investigate the structure of the multiplier module of a Hilbert module over a pro-C*-algebra and the relationship between the set of all adjointable operators from a Hilbert A-module E to a Hilbert A-module F and the set of all adjointable operators from the multiplier module M(E) to M(F).
A KSGNS (Kasparov, Stinespring, Gel'fand, Naimark, Segal) type construction for strict (respectively, covariant non-degenerate) completely multi-positive linear maps between locally C*-algebras is described.
We show that two continuous inverse limit actions α and β of a locally compact group G on two pro-C *-algebras A and B are stably outer conjugate if and only if there is a full Hilbert A-module E and a continuous action u of G on E such that E and E *(the dual module of E) are countably generated in M(E)(the multiplier module of E), respectively M(E *) and the pair (E, u) implements a strong Morita equivalence between α and β. This is a generalization of a result of F. Combes [Proc. London Math....
In this paper the tensor products of Hilbert modules over locally -algebras are defined and their properties are studied. Thus we show that most of the basic properties of the tensor products of Hilbert -modules are also valid in the context of Hilbert modules over locally -algebras.
We define the crossed product of a pro-C*-algebra A by a Hilbert A-A pro-C*-bimodule and we show that it can be realized as an inverse limit of crossed products of C*-algebras by Hilbert C*-bimodules. We also prove that under some conditions the crossed products of two Hilbert pro-C*-bimodules over strongly Morita equivalent pro-C*-algebras are strongly Morita equivalent.
We introduce a notion of Morita equivalence for Hilbert C*-modules in terms of the Morita equivalence of the algebras of compact operators on Hilbert C*-modules. We investigate the properties of the new Morita equivalence. We apply our results to study continuous actions of locally compact groups on full Hilbert C*-modules. We also present an extension of Green's theorem in the context of Hilbert C*-modules.
We introduce a property of ergodic flows, called Property B. We prove that an ergodic hyperfinite equivalence relation of type III₀ whose associated flow has this property is not of product type. A consequence is that a properly ergodic flow with Property B is not approximately transitive. We use Property B to construct a non-AT flow which-up to conjugacy-is built under a function with the dyadic odometer as base automorphism.
Page 1