Global existence of smooth solutions for the compressible viscous fluid flow with radiation in
This paper is concerned with the 3-D Cauchy problem for the compressible viscous fluid flow taking into account the radiation effect. For more general gases including ideal polytropic gas, we prove that there exists a unique smooth solutions in , provided that the initial perturbations are small. Moreover, the time decay rates of the global solutions are obtained for higher-order spatial derivatives of density, velocity, temperature, and the radiative heat flux.