Asymptotic properties of a -Laplacian and Rayleigh quotient
In this paper we consider the -Laplacian problem with Dirichlet boundary condition, The term is a real odd and increasing homeomorphism, is a nonnegative function in and is a bounded domain. In these notes an analysis of the asymptotic behavior of sequences of eigenvalues of the differential equation is provided. We assume conditions which guarantee the existence of stationary solutions of the system. Under these rather stringent hypotheses we prove that any extremal is both a minimizer...