The search session has expired. Please query the service again.
We study here several finiteness problems concerning affine Nash manifolds and Nash subsets . Three main results are: (i) A Nash function on a semialgebraic subset of has a Nash extension to an open semialgebraic neighborhood of in , (ii) A Nash set that has only normal crossings in can be covered by finitely many open semialgebraic sets equipped with Nash diffeomorphisms such that , (iii) Every affine Nash manifold with corners is a closed subset of an affine Nash manifold...
Dado un espacio T (X,T), es posible obtener una compactificación T del mismo, mediante ultrafiltros asociados a ciertas bases distinguidas de cerrados de (X,T) (Frink [4]). Se plantea así el problema siguiente: ¿Puede obtenerse toda compactificación T de (X,T) por este método? Desde el año 1964 en que Frink lo planteó, este interrogante ha tenido respuestas afirmativas parciales. Sin embargo, la solución definitiva es negativa.
Download Results (CSV)