Classification of filiform Lie algebras in dimension 8.
In Gilg (2000, 2001) the author introduces the notion of filiform Lie superalgebras, generalizing the filiform Lie algebras studied by Vergne in the sixties. In these appers, the superalgebras whose even part is isomorphic to the model filiform Lie algebra L are studied and classified in low dimensions. Here we consider a class of superalgebras whose even part is the filiform, naturally graded Lie algebra Q, which only exists in even dimension as a consequence of the centralizer property. Certain...
Page 1