Eine Bemerkung zur Lösung von Differentialgleichungen mit Parametern bei Anwendung der Lie-Reihen
The aim of this paper is to derive by elementary means a theorem on the representation of certain distributions in the form of a Fourier integral. The approach chosen was found suitable especially for students of post-graduate courses at technical universities, where it is in some situations necessary to restrict a little the extent of the mathematical theory when concentrating on a technical problem.
In diesem Artikel werden die wichtigsten Begriffe aus der Algebra und Analysis der Distributionen von J. G. Mikusiński behandelt. Im Rahmen dieser Distributionstheorie wird unter anderem über die Darstellung von Funktionen durch das Fouriersche Integral berichtet.
This paper deals with the constructions of interpolation curves which pass through given supporting points (nodes) and touch supporting tangent vectors given at only some fo these points or, as the case may be, at all these points. The mathematical kernel of these constructions is based on Lienhard's interpolation method.
This paper deals with the constructions of interpolation curves which pass through given supporting points (nodes) and touch supporting tangent vectors given at only some of these points or, as the case may be, at all these points. The mathematical kernel of these constructions is based on the Lienhard's interpolation method. Formulae for the curvature of plane and space interpolation curves are derived.
In vorliegender Arbeit wird die Konstruktion eines Flächenpflasters behandelt. Die Hauptgeneratrizen dieses Pflasters sind Kurvensegmente, deren Konstruktion in der Arbeit [J. Matušů, J. Novák: Über ein Interpolationsproblem. Apl. mat. 2(1976)] entwickelt wurde.
The uniform convergence of a sequence of Lienhard approximation of a given continuous function is proved. Further, a method of numerical integration is derived which is based on the Lienhard interpolation method.
Page 1