A new set of nonlocal boundary conditions is proposed for the higher modes of the 3D inviscid primitive equations. Numerical schemes using the splitting-up method are proposed for these modes. Numerical simulations of the full nonlinear primitive equations are performed on a nested set of domains, and the results are discussed.
A new set of nonlocal boundary conditions is proposed for the higher modes of the 3D inviscid primitive equations. Numerical schemes using the splitting-up method are proposed for these modes. Numerical simulations of the full nonlinear primitive equations are performed on a nested set of domains, and the results are discussed.
New avenues are explored for the numerical study of the two dimensional inviscid hydrostatic primitive equations of the atmosphere with humidity and saturation, in presence of topography and subject to physically plausible boundary conditions for the system of equations. Flows above a mountain are classically treated by the so-called method of terrain following coordinate system. We avoid this discretization method which induces errors in the discretization of tangential derivatives near the topography....
Download Results (CSV)