The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Normal number constructions for Cantor series with slowly growing bases

Dylan AireyBill ManceJoseph Vandehey — 2016

Czechoslovak Mathematical Journal

Let Q = ( q n ) n = 1 be a sequence of bases with q i 2 . In the case when the q i are slowly growing and satisfy some additional weak conditions, we provide a construction of a number whose Q -Cantor series expansion is both Q -normal and Q -distribution normal. Moreover, this construction will result in a computable number provided we have some additional conditions on the computability of Q , and from this construction we can provide computable constructions of numbers with atypical normality properties.

Page 1

Download Results (CSV)