Superposition rules and stochastic Lie–Scheffers systems
This paper proves a version for stochastic differential equations of the Lie–Scheffers theorem. This result characterizes the existence of nonlinear superposition rules for the general solution of those equations in terms of the involution properties of the distribution generated by the vector fields that define it. When stated in the particular case of standard deterministic systems, our main theorem improves various aspects of the classical Lie–Scheffers result. We show that the stochastic analog...