The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Extensions of generic measure-preserving actions

Julien Melleray — 2014

Annales de l’institut Fourier

We show that, whenever Γ is a countable abelian group and Δ is a finitely-generated subgroup of Γ , a generic measure-preserving action of Δ on a standard atomless probability space ( X , μ ) extends to a free measure-preserving action of Γ on ( X , μ ) . This extends a result of Ageev, corresponding to the case when Δ is infinite cyclic.

Stabilizers of closed sets in the Urysohn space

Julien Melleray — 2006

Fundamenta Mathematicae

Building on earlier work of Katětov, Uspenskij proved in [8] that the group of isometries of Urysohn's universal metric space 𝕌, endowed with the pointwise convergence topology, is a universal Polish group (i.e. it contains an isomorphic copy of any Polish group). Answering a question of Gao and Kechris, we prove here the following, more precise result: for any Polish group G, there exists a closed subset F of 𝕌 such that G is topologically isomorphic to the group of isometries of 𝕌 which map...

Topology of the isometry group of the Urysohn space

Julien Melleray — 2010

Fundamenta Mathematicae

Using classical results of infinite-dimensional geometry, we show that the isometry group of the Urysohn space, endowed with its usual Polish group topology, is homeomorphic to the separable Hilbert space ℓ²(ℕ). The proof is based on a lemma about extensions of metric spaces by finite metric spaces, which we also use to investigate (answering a question of I. Goldbring) the relationship, when A,B are finite subsets of the Urysohn space, between the group of isometries fixing A pointwise, the group...

Page 1

Download Results (CSV)