Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Extensions of generic measure-preserving actions

Julien Melleray — 2014

Annales de l’institut Fourier

We show that, whenever Γ is a countable abelian group and Δ is a finitely-generated subgroup of Γ , a generic measure-preserving action of Δ on a standard atomless probability space ( X , μ ) extends to a free measure-preserving action of Γ on ( X , μ ) . This extends a result of Ageev, corresponding to the case when Δ is infinite cyclic.

Stabilizers of closed sets in the Urysohn space

Julien Melleray — 2006

Fundamenta Mathematicae

Building on earlier work of Katětov, Uspenskij proved in [8] that the group of isometries of Urysohn's universal metric space 𝕌, endowed with the pointwise convergence topology, is a universal Polish group (i.e. it contains an isomorphic copy of any Polish group). Answering a question of Gao and Kechris, we prove here the following, more precise result: for any Polish group G, there exists a closed subset F of 𝕌 such that G is topologically isomorphic to the group of isometries of 𝕌 which map...

Topology of the isometry group of the Urysohn space

Julien Melleray — 2010

Fundamenta Mathematicae

Using classical results of infinite-dimensional geometry, we show that the isometry group of the Urysohn space, endowed with its usual Polish group topology, is homeomorphic to the separable Hilbert space ℓ²(ℕ). The proof is based on a lemma about extensions of metric spaces by finite metric spaces, which we also use to investigate (answering a question of I. Goldbring) the relationship, when A,B are finite subsets of the Urysohn space, between the group of isometries fixing A pointwise, the group...

Page 1

Download Results (CSV)