We introduce the concept of a Lyapunov game as a subclass of strictly dominated games and potential games. The advantage of this approach is that every ergodic system (repeated game) can be represented by a Lyapunov-like function. A direct acyclic graph is associated with a game. The graph structure represents the dependencies existing between the strategy profiles. By definition, a Lyapunov-like function monotonically decreases and converges to a single Lyapunov equilibrium point identified by...
In this paper we present the extraproximal method for computing the Stackelberg/Nash equilibria in a class of ergodic controlled finite Markov chains games. We exemplify the original game formulation in terms of coupled nonlinear programming problems implementing the Lagrange principle. In addition, Tikhonov's regularization method is employed to ensure the convergence of the cost-functions to a Stackelberg/Nash equilibrium point. Then, we transform the problem into a system of equations in the...
This paper presents a new model for computing optimal randomized security policies in non-cooperative Stackelberg Security Games (SSGs) for multiple players. Our framework rests upon the extraproximal method and its extension to Markov chains, within which we explicitly compute the unique Stackelberg/Nash equilibrium of the game by employing the Lagrange method and introducing the Tikhonov regularization method. We also consider a game-theory realization of the problem that involves defenders and...
This paper presents a novel approach for computing the strong Stackelberg/Nash equilibrium for Markov chains games. For solving the cooperative -leaders and -followers Markov game we consider the minimization of the norm that reduces the distance to the utopian point in the Euclidian space. Then, we reduce the optimization problem to find a Pareto optimal solution. We employ a bi-level programming method implemented by the extraproximal optimization approach for computing the strong Stackelberg/Nash...
Download Results (CSV)