In this paper we introduce a new modeling paradigm for developing a decision process representation called the Colored Decision Process Petri Net (CDPPN). It extends the Colored Petri Net (CPN) theoretic approach including Markov decision processes. CPNs are used for process representation taking advantage of the formal semantic and the graphical display. A Markov decision process is utilized as a tool for trajectory planning via a utility function. The main point of the CDPPN is its ability to...
In this paper we introduce a new modeling paradigm for shortest path games representation with Petri nets. Whereas previous works have restricted attention to tracking the net using Bellman's equation as a utility function, this work uses a Lyapunov-like function. In this sense, we change the traditional cost function by a trajectory-tracking function which is also an optimal cost-to-target function. This makes a significant difference in the conceptualization of the problem domain, allowing the...
We provide a framework for hierarchical specification called Hierarchical Decision Process Petri Nets (HDPPNs). It is an extension of Decision Process Petri Nets (DPPNs) including a hierarchical decomposition process that generates less complex nets with equivalent behavior. As a result, the complexity of the analysis for a sophisticated system is drastically reduced. In the HDPPN, we represent the mark-dynamic and trajectory-dynamic properties of a DPPN. Within the framework of the mark-dynamic...
In this paper we consider workflow nets as dynamical systems governed by ordinary difference equations described by a particular class of Petri nets. Workflow nets are a formal model of business processes. Well-formed business processes correspond to sound workflow nets. Even if it seems necessary to require the soundness of workflow nets, there exist business processes with conditional behavior that will not necessarily satisfy the soundness property. In this sense, we propose an analytical method...
We introduce the concept of a Lyapunov game as a subclass of strictly dominated games and potential games. The advantage of this approach is that every ergodic system (repeated game) can be represented by a Lyapunov-like function. A direct acyclic graph is associated with a game. The graph structure represents the dependencies existing between the strategy profiles. By definition, a Lyapunov-like function monotonically decreases and converges to a single Lyapunov equilibrium point identified by...
In this paper we present the extraproximal method for computing the Stackelberg/Nash equilibria in a class of ergodic controlled finite Markov chains games. We exemplify the original game formulation in terms of coupled nonlinear programming problems implementing the Lagrange principle. In addition, Tikhonov's regularization method is employed to ensure the convergence of the cost-functions to a Stackelberg/Nash equilibrium point. Then, we transform the problem into a system of equations in the...
This paper presents a new model for computing optimal randomized security policies in non-cooperative Stackelberg Security Games (SSGs) for multiple players. Our framework rests upon the extraproximal method and its extension to Markov chains, within which we explicitly compute the unique Stackelberg/Nash equilibrium of the game by employing the Lagrange method and introducing the Tikhonov regularization method. We also consider a game-theory realization of the problem that involves defenders and...
This paper presents a novel approach for computing the strong Stackelberg/Nash equilibrium for Markov chains games. For solving the cooperative -leaders and -followers Markov game we consider the minimization of the norm that reduces the distance to the utopian point in the Euclidian space. Then, we reduce the optimization problem to find a Pareto optimal solution. We employ a bi-level programming method implemented by the extraproximal optimization approach for computing the strong Stackelberg/Nash...
Download Results (CSV)