The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

On the Fundamental Group of self-affine plane Tiles

Jun LuoJörg M. Thuswaldner — 2006

Annales de l’institut Fourier

Let A 2 × 2 be an expanding matrix, 𝒟 2 a set with | det ( A ) | elements and define 𝒯 via the set equation A 𝒯 = 𝒯 + 𝒟 . If the two-dimensional Lebesgue measure of 𝒯 is positive we call 𝒯 a self-affine plane tile. In the present paper we are concerned with topological properties of 𝒯 . We show that the fundamental group π 1 ( 𝒯 ) of 𝒯 is either trivial or uncountable and provide criteria for the triviality as well as the uncountability of π 1 ( 𝒯 ) . Furthermore, we give a short proof of the fact that the closure of each component of int ( 𝒯 ) is a locally...

Page 1

Download Results (CSV)