On the Fundamental Group of self-affine plane Tiles
Let be an expanding matrix, a set with elements and define via the set equation . If the two-dimensional Lebesgue measure of is positive we call a self-affine plane tile. In the present paper we are concerned with topological properties of . We show that the fundamental group of is either trivial or uncountable and provide criteria for the triviality as well as the uncountability of . Furthermore, we give a short proof of the fact that the closure of each component of is a locally...