On the Fundamental Group of self-affine plane Tiles

Jun Luo[1]; Jörg M. Thuswaldner[2]

  • [1] Sun Yat-Sen University School of Mathematics and Computational Science Guangzhou 510275 (China)
  • [2] Institut für Mathematik und Angewandte Geometrie Abteilung für Mathematik und Statistik Montanuniversität Leoben Franz-Josef-Strasse 18 8700 Leoben (Austria)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 7, page 2493-2524
  • ISSN: 0373-0956

Abstract

top
Let A 2 × 2 be an expanding matrix, 𝒟 2 a set with | det ( A ) | elements and define 𝒯 via the set equation A 𝒯 = 𝒯 + 𝒟 . If the two-dimensional Lebesgue measure of 𝒯 is positive we call 𝒯 a self-affine plane tile. In the present paper we are concerned with topological properties of 𝒯 . We show that the fundamental group π 1 ( 𝒯 ) of 𝒯 is either trivial or uncountable and provide criteria for the triviality as well as the uncountability of π 1 ( 𝒯 ) . Furthermore, we give a short proof of the fact that the closure of each component of int ( 𝒯 ) is a locally connected continuum (we prove this result even in the more general case of plane IFS attractors fulfilling the open set condition). If π 1 ( 𝒯 ) = 0 we even show that the closure of each component of int ( 𝒯 ) is homeomorphic to a closed disk.We apply our results to several examples of tiles which are studied in the literature.

How to cite

top

Luo, Jun, and Thuswaldner, Jörg M.. "On the Fundamental Group of self-affine plane Tiles." Annales de l’institut Fourier 56.7 (2006): 2493-2524. <http://eudml.org/doc/10211>.

@article{Luo2006,
abstract = {Let $A\in \mathbb\{Z\}^\{2\} \times \mathbb\{Z\}^2$ be an expanding matrix, $\mathcal\{D\}\subset \mathbb\{Z\}^2$ a set with $|\det (A)|$ elements and define $\{\mathcal\{T\}\}$ via the set equation $A\mathcal\{T\}=\mathcal\{T\}+\mathcal\{D\}$. If the two-dimensional Lebesgue measure of $\mathcal\{T\}$ is positive we call $\mathcal\{T\}$ a self-affine plane tile. In the present paper we are concerned with topological properties of $\mathcal\{T\}$. We show that the fundamental group $\pi _1(\mathcal\{T\})$ of $\{\mathcal\{T\}\}$ is either trivial or uncountable and provide criteria for the triviality as well as the uncountability of $\pi _1(\mathcal\{T\})$. Furthermore, we give a short proof of the fact that the closure of each component of $\{\rm int\}(\{\mathcal\{T\}\})$ is a locally connected continuum (we prove this result even in the more general case of plane IFS attractors fulfilling the open set condition). If $\pi _1(\{\mathcal\{T\}\})=0$ we even show that the closure of each component of $\rm int(\mathcal\{T\})$ is homeomorphic to a closed disk.We apply our results to several examples of tiles which are studied in the literature.},
affiliation = {Sun Yat-Sen University School of Mathematics and Computational Science Guangzhou 510275 (China); Institut für Mathematik und Angewandte Geometrie Abteilung für Mathematik und Statistik Montanuniversität Leoben Franz-Josef-Strasse 18 8700 Leoben (Austria)},
author = {Luo, Jun, Thuswaldner, Jörg M.},
journal = {Annales de l’institut Fourier},
keywords = {Tile; tiling; fundamental group; number system; tile},
language = {eng},
number = {7},
pages = {2493-2524},
publisher = {Association des Annales de l’institut Fourier},
title = {On the Fundamental Group of self-affine plane Tiles},
url = {http://eudml.org/doc/10211},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Luo, Jun
AU - Thuswaldner, Jörg M.
TI - On the Fundamental Group of self-affine plane Tiles
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 7
SP - 2493
EP - 2524
AB - Let $A\in \mathbb{Z}^{2} \times \mathbb{Z}^2$ be an expanding matrix, $\mathcal{D}\subset \mathbb{Z}^2$ a set with $|\det (A)|$ elements and define ${\mathcal{T}}$ via the set equation $A\mathcal{T}=\mathcal{T}+\mathcal{D}$. If the two-dimensional Lebesgue measure of $\mathcal{T}$ is positive we call $\mathcal{T}$ a self-affine plane tile. In the present paper we are concerned with topological properties of $\mathcal{T}$. We show that the fundamental group $\pi _1(\mathcal{T})$ of ${\mathcal{T}}$ is either trivial or uncountable and provide criteria for the triviality as well as the uncountability of $\pi _1(\mathcal{T})$. Furthermore, we give a short proof of the fact that the closure of each component of ${\rm int}({\mathcal{T}})$ is a locally connected continuum (we prove this result even in the more general case of plane IFS attractors fulfilling the open set condition). If $\pi _1({\mathcal{T}})=0$ we even show that the closure of each component of $\rm int(\mathcal{T})$ is homeomorphic to a closed disk.We apply our results to several examples of tiles which are studied in the literature.
LA - eng
KW - Tile; tiling; fundamental group; number system; tile
UR - http://eudml.org/doc/10211
ER -

References

top
  1. L. V. Ahlfors, Complex Analysis, (1966), McGraw-Hill Book Comp Zbl0154.31904MR510197
  2. S. Akiyama, J. M. Thuswaldner, A survey on topological properties of tiles related to number systems, Geom. Dedicata 109 (2004), 89-105 Zbl1073.37017MR2113188
  3. S. Akiyama, J. M. Thuswaldner, Topological structure of fractal tilings generated by quadratic number systems, Comput. Math. Appl. 49 (2005), 1439-1485 Zbl1123.11004MR2149493
  4. C. Bandt, Y. Wang, Disk-like self-affine tiles in 2 , Discrete Comput. Geom. 26 (2001), 591-601 Zbl1020.52018MR1863811
  5. G. R. Conner, J. W. Lamoreaux, On the existence of universal covering spaces for metric spaces and subsets of the euclidean plane Zbl1092.57001MR2214874
  6. H. T. Croft, K. J. Falconer, R. K. Guy, Unsolved problems in geometry. Problem Books in Mathematics, (1994), Springer-Verlag, New York Zbl0748.52001MR1316393
  7. S. Eilenberg, Languages and Machines, A (1974), Academic Press, New York 
  8. K. Falconer, Fractal Geometry, (1990), John Wiley and Sons Zbl0689.28003MR1102677
  9. K. Gröchenig, A. Haas, Self-similar lattice tilings, J. Fourier Anal. Appl. 1 (1994), 131-170 Zbl0978.28500MR1348740
  10. M. Hata, On the structure of self-similar sets, Japan J. Appl. Math. 2 (1985), 381-414 Zbl0608.28003MR839336
  11. A. Hatcher, Algebraic Topology, (2002), Cambridge University Press, Cambridge Zbl1044.55001MR1867354
  12. J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713-747 Zbl0598.28011MR625600
  13. I. Kátai, Number Systems and Fractal Geometry, (1995), Janus Pannonius University Pecs Zbl1029.11005
  14. A. Kovács, On the computation of attractors for invertible expanding linear operators in k , Publ. Math. Debrecen 56 (2000), 97-120 Zbl0999.11009MR1740496
  15. K. Kuratowski, Topology, I (1966), Academic Press, New York and London Zbl0158.40802MR217751
  16. K. Kuratowski, Topology, II (1968), Academic Press, New York and London Zbl0158.40802
  17. J. Luo, S. Akiyama, J. M. Thuswaldner, On the boundary connectedness of connected tiles, Math. Proc. Cambridge Philos. Soc. 137 (2004), 397-410 Zbl1070.37010MR2092067
  18. J. Luo, H. Rao, B. Tan, Topological structure of self-similar sets, Fractals 2 (2002), 223-227 Zbl1075.28005MR1910665
  19. E. E. Moise, Geometric Topology in Dimensions 2 and 3 , 47 (1977), Springer-Verlag, New York-Heidelberg Zbl0349.57001MR488059
  20. S.-M. Ngai, T.-M. Tang, Vertices of self-similar tiles MR2210263
  21. S.-M. Ngai, T.-M. Tang, A technique in the topology of connected self-similar tiles, Fractals 12 (2004), 389-403 Zbl1304.28009MR2109984
  22. S.-M. Ngai, T.-M. Tang, Toplogy of self-similar tiles in the plane with disconnected interiors, Topology Appl. 150 (2005), 139-155 Zbl1077.37019MR2133675
  23. C. Pommerenke, Univalent Functions, (1975), Vandenhoeck & Ruprecht, Göttingen Zbl0298.30014MR507768
  24. K. Scheicher, J. M. Thuswaldner, Canonical number systems, counting automata and fractals, Math. Proc. Cambridge Philos. Soc. 133 (2002), 163-182 Zbl1001.68070MR1900260
  25. K. Scheicher, J. M. Thuswaldner, Neighbours of self-affine tiles in lattice tilings, Fractals in Graz 2001. Analysis, dynamics, geometry, stochastics (2003), 241-262, GrabnerP.P., Graz, Austria Zbl1040.52013MR2091708
  26. R. Strichartz, Y. Wang, Geometry of self-affine tiles I, Indiana Univ. Math. J. 23 (1999), 1-23 Zbl0938.52017MR1722192
  27. J. M. Thuswaldner, Attractors of invertible expanding linear operators and number systems in 2 , Publ. Math. Debrecen 58 (2001), 423-440 Zbl1012.11009MR1831051
  28. A. Vince, Digit tiling of euclidean space, Directions in Mathematical Quasicrystals (2000), 329-370, American Mathematical Society Providence, RI Zbl0972.52012MR1798999

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.