Almost Abelian rings
A ring is defined to be left almost Abelian if implies for and , where and stand respectively for the set of idempotents and the set of nilpotents of . Some characterizations and properties of such rings are included. It follows that if is a left almost Abelian ring, then is -regular if and only if is an ideal of and is regular. Moreover it is proved that (1) is an Abelian ring if and only if is a left almost Abelian left idempotent reflexive ring. (2) is strongly...