Almost orthogonality and Hausdorff interval topologies of atomic lattice effect algebras
We prove that the interval topology of an Archimedean atomic lattice effect algebra is Hausdorff whenever the set of all atoms of is almost orthogonal. In such a case is order continuous. If moreover is complete then order convergence of nets of elements of is topological and hence it coincides with convergence in the order topology and this topology is compact Hausdorff compatible with a uniformity induced by a separating function family on corresponding to compact and cocompact elements....