Almost orthogonality and Hausdorff interval topologies of atomic lattice effect algebras

Jan Paseka; Zdena Riečanová; Junde Wu

Kybernetika (2010)

  • Volume: 46, Issue: 6, page 953-970
  • ISSN: 0023-5954

Abstract

top
We prove that the interval topology of an Archimedean atomic lattice effect algebra E is Hausdorff whenever the set of all atoms of E is almost orthogonal. In such a case E is order continuous. If moreover E is complete then order convergence of nets of elements of E is topological and hence it coincides with convergence in the order topology and this topology is compact Hausdorff compatible with a uniformity induced by a separating function family on E corresponding to compact and cocompact elements. For block-finite Archimedean atomic lattice effect algebras the equivalence of almost orthogonality and s-compact generation is shown. As the main application we obtain a state smearing theorem for these effect algebras, as well as the continuity of ø p l u s -operation in the order and interval topologies on them.

How to cite

top

Paseka, Jan, Riečanová, Zdena, and Wu, Junde. "Almost orthogonality and Hausdorff interval topologies of atomic lattice effect algebras." Kybernetika 46.6 (2010): 953-970. <http://eudml.org/doc/196458>.

@article{Paseka2010,
abstract = {We prove that the interval topology of an Archimedean atomic lattice effect algebra $E$ is Hausdorff whenever the set of all atoms of $E$ is almost orthogonal. In such a case $E$ is order continuous. If moreover $E$ is complete then order convergence of nets of elements of $E$ is topological and hence it coincides with convergence in the order topology and this topology is compact Hausdorff compatible with a uniformity induced by a separating function family on $E$ corresponding to compact and cocompact elements. For block-finite Archimedean atomic lattice effect algebras the equivalence of almost orthogonality and s-compact generation is shown. As the main application we obtain a state smearing theorem for these effect algebras, as well as the continuity of $øplus$-operation in the order and interval topologies on them.},
author = {Paseka, Jan, Riečanová, Zdena, Wu, Junde},
journal = {Kybernetika},
keywords = {non-classical logics; D-posets; effect algebras; $MV$-algebras; interval and order topology; states; convergence of nets; effect algebra; interval topology; order topology},
language = {eng},
number = {6},
pages = {953-970},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Almost orthogonality and Hausdorff interval topologies of atomic lattice effect algebras},
url = {http://eudml.org/doc/196458},
volume = {46},
year = {2010},
}

TY - JOUR
AU - Paseka, Jan
AU - Riečanová, Zdena
AU - Wu, Junde
TI - Almost orthogonality and Hausdorff interval topologies of atomic lattice effect algebras
JO - Kybernetika
PY - 2010
PB - Institute of Information Theory and Automation AS CR
VL - 46
IS - 6
SP - 953
EP - 970
AB - We prove that the interval topology of an Archimedean atomic lattice effect algebra $E$ is Hausdorff whenever the set of all atoms of $E$ is almost orthogonal. In such a case $E$ is order continuous. If moreover $E$ is complete then order convergence of nets of elements of $E$ is topological and hence it coincides with convergence in the order topology and this topology is compact Hausdorff compatible with a uniformity induced by a separating function family on $E$ corresponding to compact and cocompact elements. For block-finite Archimedean atomic lattice effect algebras the equivalence of almost orthogonality and s-compact generation is shown. As the main application we obtain a state smearing theorem for these effect algebras, as well as the continuity of $øplus$-operation in the order and interval topologies on them.
LA - eng
KW - non-classical logics; D-posets; effect algebras; $MV$-algebras; interval and order topology; states; convergence of nets; effect algebra; interval topology; order topology
UR - http://eudml.org/doc/196458
ER -

References

top
  1. Beltrametti, E. G., Cassinelli, G., The Logic of Quantum Mechanics, Addison-Wesley, Reading 1981. (1981) Zbl0504.03026MR0635780
  2. Chang, C. C., 10.1090/S0002-9947-1958-0094302-9, Trans. Amer. Math. Soc. 88 (1958) 467–490. (1958) Zbl0084.00704MR0094302DOI10.1090/S0002-9947-1958-0094302-9
  3. Császár, A., General Topology, Akadémiai Kiadó, Budapest 1978. (1978) 
  4. Erné, M., Weck, S., 10.1216/RMJ-1980-10-4-805, Rocky Mt. J. Math. 10 (1980), 805–818. (1980) MR0595106DOI10.1216/RMJ-1980-10-4-805
  5. Frink, O., Topology in lattices, Trans. Amer. Math. Soc. 51 (1942), 569–582. (1942) Zbl0061.39305MR0006496
  6. Greechie, R. J., Foulis, D. J., Pulmannová, S., 10.1007/BF01108592, Order 12 (1995), 91–106. (1995) MR1336539DOI10.1007/BF01108592
  7. Gudder, S. P., Sharply dominating effect algebras, Tatra Mt. Math. Publ. 15 (1998), 23–30. (1998) Zbl0939.03073MR1655076
  8. Jenča, G., Riečanová, Z., On sharp elements in lattice ordered effect algebras, BUSEFAL 80 (1999), 24–29. (1999) 
  9. Jenča, G., Riečanová, Z., A survey on sharp elements in unsharp Qquantum logics, J. Electr. Engrg. 52 (2001), 7–8, 237-239. (2001) 
  10. Kalmbach, G., Orthomodular Lattices, Kluwer Academic Publ. Dordrecht 1998. (1998) 
  11. Katětov, M., Remarks on Boolean algebras, Colloq. Math. 11 (1951), 229–235. (1951) MR0049862
  12. Kirchheimová, H., Riečanová, H., Note on order convergence and order topology, In: B. Riečan and T. Neubrunn: Measure, Integral and Order, Appendix B, Ister Science (Bratislava) and Kluwer Academic Publishers, Dordrecht – Boston – London 1997. (1997) 
  13. Kôpka, F., 10.1007/BF00676263, Interernat. J. Theor. Phys. 34 (1995), 1525–1531. (1995) MR1353696DOI10.1007/BF00676263
  14. Qiang, Lei, Junde, Wu, Ronglu, Li, 10.1016/j.aml.2009.01.008, Appl. Math. Lett. 22 (2009), 1003–1006. (2009) MR2522989DOI10.1016/j.aml.2009.01.008
  15. Mosná, K., Atomic lattice effect algebras and their sub-lattice effect algebras, J. Electr. Engrg. 58 (2007), 7/S, 3–6. (2007) 
  16. Paseka, J., Riečanová, Z., 10.1007/s10773-009-0011-4, Internat. J. Theor. Phys. 49 (2010), 3216–3223. (2010) Zbl1202.06007MR2738081DOI10.1007/s10773-009-0011-4
  17. Pulmannová, S., Riečanová, Z., Compact topological orthomodular lattices, In: Contributions to General Algebra 7, Verlag Hölder – Pichler – Tempsky, Wien, Verlag B.G. Teubner, Stuttgart 1991, pp. 277–282. (1991) MR1143091
  18. Pulmannová, S., Riečanová, Z., 10.1016/0022-4049(93)90058-2, J. Pure and Applied Algebra 89 (1993), 295–304. (1993) DOI10.1016/0022-4049(93)90058-2
  19. Riečanová, Z., On Order Continuity of Quantum Structures and Their Homomorphisms, Demonstratio Mathematica 29 (1996), 433–443. (1996) MR1407855
  20. Riečanová, Z., 10.1023/A:1026642028987, J. Theor. Phys. 37 (1998), 191–197. (1998) MR1637165DOI10.1023/A:1026642028987
  21. Riečanová, Z., Compatibility and central elements in effect algebras, Tatra Mt. Math. Publ. 16 (1999), 151–158. (1999) MR1725293
  22. Riečanová, Z., Archimedean and block-finite lattice effect algebras, Demonstratio Mathematica 33 (2000), 443–452. (2000) MR1791464
  23. Riečanová, Z., 10.1023/A:1003619806024, Internat. J. of Theor. Phys. 39 (2000), 231–237. (2000) MR1762594DOI10.1023/A:1003619806024
  24. Riečanová, Z., Orthogonal Sets in Effect Algebras, Demonstratio Mathematica 34 (2001), 525–532. (2001) Zbl0989.03071MR1853730
  25. Riečanová, Z., 10.1023/A:1020136531601, Internat. J. of Theor. Phys. 41 (2002), 1511–1524. (2002) Zbl1016.81005MR1932844DOI10.1023/A:1020136531601
  26. Riečanová, Z., Continuous Lattice Effect Algebras Admitting Order-Continuous States, Fuzzy Sests and Systems 136 (2003), 41–54. (2003) Zbl1022.03047MR1978468
  27. Riečanová, Z., Order-topological lattice effect algebras, In: Contributions to General Algebra 15, Proc. Klagenfurt Workshop 2003 on General Algebra, Klagenfurt 2003, pp. 151–160. (2003) MR2082379
  28. Riečanová, Z., Paseka, J., State smearing theorems and the existence of states on some atomic lattice effect algebras, J. Logic and Computation, Advance Access, published on March 13, 2009, doi:10.1093/logcom/exp018. (2009) 
  29. Sarymsakov, T.A., Ajupov, S.A., Chadzhijev, Z., Chilin, V.J., Ordered algebras, FAN, Tashkent, (in Russian), 1983. (1983) MR0781349
  30. Schmidt, J., Zur Kennzeichnung der Dedekind-Mac Neilleschen Hülle einer Geordneten Menge, Archiv d. Math. 7 (1956), 241–249. (1956) MR0084484

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.