Almost orthogonality and Hausdorff interval topologies of atomic lattice effect algebras
Jan Paseka; Zdena Riečanová; Junde Wu
Kybernetika (2010)
- Volume: 46, Issue: 6, page 953-970
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topPaseka, Jan, Riečanová, Zdena, and Wu, Junde. "Almost orthogonality and Hausdorff interval topologies of atomic lattice effect algebras." Kybernetika 46.6 (2010): 953-970. <http://eudml.org/doc/196458>.
@article{Paseka2010,
abstract = {We prove that the interval topology of an Archimedean atomic lattice effect algebra $E$ is Hausdorff whenever the set of all atoms of $E$ is almost orthogonal. In such a case $E$ is order continuous. If moreover $E$ is complete then order convergence of nets of elements of $E$ is topological and hence it coincides with convergence in the order topology and this topology is compact Hausdorff compatible with a uniformity induced by a separating function family on $E$ corresponding to compact and cocompact elements. For block-finite Archimedean atomic lattice effect algebras the equivalence of almost orthogonality and s-compact generation is shown. As the main application we obtain a state smearing theorem for these effect algebras, as well as the continuity of $øplus$-operation in the order and interval topologies on them.},
author = {Paseka, Jan, Riečanová, Zdena, Wu, Junde},
journal = {Kybernetika},
keywords = {non-classical logics; D-posets; effect algebras; $MV$-algebras; interval and order topology; states; convergence of nets; effect algebra; interval topology; order topology},
language = {eng},
number = {6},
pages = {953-970},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Almost orthogonality and Hausdorff interval topologies of atomic lattice effect algebras},
url = {http://eudml.org/doc/196458},
volume = {46},
year = {2010},
}
TY - JOUR
AU - Paseka, Jan
AU - Riečanová, Zdena
AU - Wu, Junde
TI - Almost orthogonality and Hausdorff interval topologies of atomic lattice effect algebras
JO - Kybernetika
PY - 2010
PB - Institute of Information Theory and Automation AS CR
VL - 46
IS - 6
SP - 953
EP - 970
AB - We prove that the interval topology of an Archimedean atomic lattice effect algebra $E$ is Hausdorff whenever the set of all atoms of $E$ is almost orthogonal. In such a case $E$ is order continuous. If moreover $E$ is complete then order convergence of nets of elements of $E$ is topological and hence it coincides with convergence in the order topology and this topology is compact Hausdorff compatible with a uniformity induced by a separating function family on $E$ corresponding to compact and cocompact elements. For block-finite Archimedean atomic lattice effect algebras the equivalence of almost orthogonality and s-compact generation is shown. As the main application we obtain a state smearing theorem for these effect algebras, as well as the continuity of $øplus$-operation in the order and interval topologies on them.
LA - eng
KW - non-classical logics; D-posets; effect algebras; $MV$-algebras; interval and order topology; states; convergence of nets; effect algebra; interval topology; order topology
UR - http://eudml.org/doc/196458
ER -
References
top- Beltrametti, E. G., Cassinelli, G., The Logic of Quantum Mechanics, Addison-Wesley, Reading 1981. (1981) Zbl0504.03026MR0635780
- Chang, C. C., 10.1090/S0002-9947-1958-0094302-9, Trans. Amer. Math. Soc. 88 (1958) 467–490. (1958) Zbl0084.00704MR0094302DOI10.1090/S0002-9947-1958-0094302-9
- Császár, A., General Topology, Akadémiai Kiadó, Budapest 1978. (1978)
- Erné, M., Weck, S., 10.1216/RMJ-1980-10-4-805, Rocky Mt. J. Math. 10 (1980), 805–818. (1980) MR0595106DOI10.1216/RMJ-1980-10-4-805
- Frink, O., Topology in lattices, Trans. Amer. Math. Soc. 51 (1942), 569–582. (1942) Zbl0061.39305MR0006496
- Greechie, R. J., Foulis, D. J., Pulmannová, S., 10.1007/BF01108592, Order 12 (1995), 91–106. (1995) MR1336539DOI10.1007/BF01108592
- Gudder, S. P., Sharply dominating effect algebras, Tatra Mt. Math. Publ. 15 (1998), 23–30. (1998) Zbl0939.03073MR1655076
- Jenča, G., Riečanová, Z., On sharp elements in lattice ordered effect algebras, BUSEFAL 80 (1999), 24–29. (1999)
- Jenča, G., Riečanová, Z., A survey on sharp elements in unsharp Qquantum logics, J. Electr. Engrg. 52 (2001), 7–8, 237-239. (2001)
- Kalmbach, G., Orthomodular Lattices, Kluwer Academic Publ. Dordrecht 1998. (1998)
- Katětov, M., Remarks on Boolean algebras, Colloq. Math. 11 (1951), 229–235. (1951) MR0049862
- Kirchheimová, H., Riečanová, H., Note on order convergence and order topology, In: B. Riečan and T. Neubrunn: Measure, Integral and Order, Appendix B, Ister Science (Bratislava) and Kluwer Academic Publishers, Dordrecht – Boston – London 1997. (1997)
- Kôpka, F., 10.1007/BF00676263, Interernat. J. Theor. Phys. 34 (1995), 1525–1531. (1995) MR1353696DOI10.1007/BF00676263
- Qiang, Lei, Junde, Wu, Ronglu, Li, 10.1016/j.aml.2009.01.008, Appl. Math. Lett. 22 (2009), 1003–1006. (2009) MR2522989DOI10.1016/j.aml.2009.01.008
- Mosná, K., Atomic lattice effect algebras and their sub-lattice effect algebras, J. Electr. Engrg. 58 (2007), 7/S, 3–6. (2007)
- Paseka, J., Riečanová, Z., 10.1007/s10773-009-0011-4, Internat. J. Theor. Phys. 49 (2010), 3216–3223. (2010) Zbl1202.06007MR2738081DOI10.1007/s10773-009-0011-4
- Pulmannová, S., Riečanová, Z., Compact topological orthomodular lattices, In: Contributions to General Algebra 7, Verlag Hölder – Pichler – Tempsky, Wien, Verlag B.G. Teubner, Stuttgart 1991, pp. 277–282. (1991) MR1143091
- Pulmannová, S., Riečanová, Z., 10.1016/0022-4049(93)90058-2, J. Pure and Applied Algebra 89 (1993), 295–304. (1993) DOI10.1016/0022-4049(93)90058-2
- Riečanová, Z., On Order Continuity of Quantum Structures and Their Homomorphisms, Demonstratio Mathematica 29 (1996), 433–443. (1996) MR1407855
- Riečanová, Z., 10.1023/A:1026642028987, J. Theor. Phys. 37 (1998), 191–197. (1998) MR1637165DOI10.1023/A:1026642028987
- Riečanová, Z., Compatibility and central elements in effect algebras, Tatra Mt. Math. Publ. 16 (1999), 151–158. (1999) MR1725293
- Riečanová, Z., Archimedean and block-finite lattice effect algebras, Demonstratio Mathematica 33 (2000), 443–452. (2000) MR1791464
- Riečanová, Z., 10.1023/A:1003619806024, Internat. J. of Theor. Phys. 39 (2000), 231–237. (2000) MR1762594DOI10.1023/A:1003619806024
- Riečanová, Z., Orthogonal Sets in Effect Algebras, Demonstratio Mathematica 34 (2001), 525–532. (2001) Zbl0989.03071MR1853730
- Riečanová, Z., 10.1023/A:1020136531601, Internat. J. of Theor. Phys. 41 (2002), 1511–1524. (2002) Zbl1016.81005MR1932844DOI10.1023/A:1020136531601
- Riečanová, Z., Continuous Lattice Effect Algebras Admitting Order-Continuous States, Fuzzy Sests and Systems 136 (2003), 41–54. (2003) Zbl1022.03047MR1978468
- Riečanová, Z., Order-topological lattice effect algebras, In: Contributions to General Algebra 15, Proc. Klagenfurt Workshop 2003 on General Algebra, Klagenfurt 2003, pp. 151–160. (2003) MR2082379
- Riečanová, Z., Paseka, J., State smearing theorems and the existence of states on some atomic lattice effect algebras, J. Logic and Computation, Advance Access, published on March 13, 2009, doi:10.1093/logcom/exp018. (2009)
- Sarymsakov, T.A., Ajupov, S.A., Chadzhijev, Z., Chilin, V.J., Ordered algebras, FAN, Tashkent, (in Russian), 1983. (1983) MR0781349
- Schmidt, J., Zur Kennzeichnung der Dedekind-Mac Neilleschen Hülle einer Geordneten Menge, Archiv d. Math. 7 (1956), 241–249. (1956) MR0084484
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.