Hyperplane conjecture for quotient spaces of Lp.
We prove an abstract comparison principle which translates gaussian cotype into Rademacher cotype conditions and vice versa. More precisely, let 2 < q < ∞ and T: C(K) → F a continuous linear operator. (1) T is of gaussian cotype q if and only if , for all sequences with decreasing. (2) T is of Rademacher cotype q if and only if , for all sequences with decreasing. Our method allows a restriction to a fixed number of vectors and complements the corresponding results of Talagrand.
The dual of a Banach space X is of weak type p if and only if the entropy numbers of an r-nuclear operator with values in a Banach space of weak type q belong to the Lorentz sequence space with 1/s + 1/p + 1/q = 1 + 1/r (0 < r < 1, 1 ≤ p, q ≤ 2). It is enough to test this for Y = X*. This extends results of Carl, König and Kühn.
We determine the set of all triples 1 ≤ p,q,r ≤ ∞ for which the so-called Marcinkiewicz-Zygmund inequality is satisfied: There exists a constant c≥ 0 such that for each bounded linear operator , each n ∈ ℕ and functions , . This type of inequality includes as special cases well-known inequalities of Paley, Marcinkiewicz, Zygmund, Grothendieck, and Kwapień. If such a Marcinkiewicz-Zygmund inequality holds for a given triple (p,q,r), then we calculate the best constant c ≥ 0 (with the only exception:...
There exists an absolute constant such that for any n-dimensional Banach space E there exists a k-dimensional subspace F ⊂ E with k≤ n/2 such that . The concept of volume ratio with respect to -spaces is used to prove the following distance estimate for : .
Page 1