Quantum isometries and group dual subgroups
We study the discrete groups whose duals embed into a given compact quantum group, . In the matrix case the embedding condition is equivalent to having a quotient map , where is a certain family of groups associated to . We develop here a number of techniques for computing , partly inspired from Bichon’s classification of group dual subgroups . These results are motivated by Goswami’s notion of quantum isometry group, because a compact connected Riemannian manifold cannot have non-abelian...