On the inner Daniell-Stone and Riesz representation theorems.
The assertion in question comes from the short final section in Theory of capacities of Choquet (1953/54), in connection with his prototype of the subsequent Choquet integral. The problem was whether and when this operation is additive. Choquet had the much more abstract idea that all functionals in a certain wide class must be subadditive, and similarly for superadditivity. His treatment of this point was more like an outline, and his proof limited to a rather narrow special case. Thus the proper...
The paper resumes one of the themes initiated in the final sections of the celebrated “Theory of Capacities” of Choquet 1953-54. It aims at comprehensive versions in the spirit of the author’s recent work in measure and integration.
Page 1