Upper envelopes of inner premeasures

Heinz König

Annales de l'institut Fourier (2000)

  • Volume: 50, Issue: 2, page 401-422
  • ISSN: 0373-0956

Abstract

top
The paper resumes one of the themes initiated in the final sections of the celebrated “Theory of Capacities” of Choquet 1953-54. It aims at comprehensive versions in the spirit of the author’s recent work in measure and integration.

How to cite

top

König, Heinz. "Upper envelopes of inner premeasures." Annales de l'institut Fourier 50.2 (2000): 401-422. <http://eudml.org/doc/75423>.

@article{König2000,
abstract = {The paper resumes one of the themes initiated in the final sections of the celebrated “Theory of Capacities” of Choquet 1953-54. It aims at comprehensive versions in the spirit of the author’s recent work in measure and integration.},
author = {König, Heinz},
journal = {Annales de l'institut Fourier},
keywords = {submodular isotone set functions; inner premeasures; supportive properties; lattice of sets; supermodular; upper envelope; tight; Radon premeasure},
language = {eng},
number = {2},
pages = {401-422},
publisher = {Association des Annales de l'Institut Fourier},
title = {Upper envelopes of inner premeasures},
url = {http://eudml.org/doc/75423},
volume = {50},
year = {2000},
}

TY - JOUR
AU - König, Heinz
TI - Upper envelopes of inner premeasures
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 2
SP - 401
EP - 422
AB - The paper resumes one of the themes initiated in the final sections of the celebrated “Theory of Capacities” of Choquet 1953-54. It aims at comprehensive versions in the spirit of the author’s recent work in measure and integration.
LA - eng
KW - submodular isotone set functions; inner premeasures; supportive properties; lattice of sets; supermodular; upper envelope; tight; Radon premeasure
UR - http://eudml.org/doc/75423
ER -

References

top
  1. [1] W. ADAMSKI, Capacity like set functions and upper envelopes of measures, Math. Ann., 229 (1977), 237-244. Zbl0341.28002MR56 #3225
  2. [2] W. ADAMSKI, On regular extensions of contents and measures, J. Math. Analysis Appl., 127 (1987), 211-225. Zbl0644.28002MR88j:28003
  3. [3] B. ANGER, Approximation of capacities by measures, in: Lecture Notes Math., 226, pp. 152-170, Springer, 1971. 
  4. [4] B. ANGER, Kapazitäten und obere Einhüllende von Maßen. Math. Ann., 199 (1972), 115-130. Zbl0232.31012MR51 #3482
  5. [5] B. ANGER, Representation of capacities. Math. Ann., 229 (1977), 245-258. Zbl0339.31010MR57 #6465
  6. [6] B. ANGER and J. LEMBCKE, Hahn-Banach type theorems for hypolinear functionals, Math. Ann., 209 (1974), 127-152. Zbl0268.46006MR50 #934
  7. [7] G. CHOQUET, Theory of capacities, Annales Inst. Fourier, Grenoble, 5 (1953-1954), 131-295. Zbl0064.35101MR18,295g
  8. [8] G. CHOQUET, Forme abstraite du théorème de capacitabilité, Annales Inst. Fourier, Grenoble, 9 (1959), 83-89. Zbl0093.29701MR22 #3692b
  9. [9] C. DELLACHERIE, Quelques commentaires sur les prolongements de capacités, in: Lecture Notes Math., 191, 77-81, Springer, 1971. 
  10. [10] C. DELLACHERIE, Ensembles Analytiques, Capacités, Mesures de Hausdorff, Lecture Notes Math., 295, Springer, 1972. Zbl0259.31001MR58 #11301
  11. [11] B. FUCHSSTEINER and H. KÖNIG, New versions of the Hahn-Banach theorem, in: Intern. Ser.Num. Math., 47, 255-266, Birkhäuser 1980. Zbl0452.46002MR82k:46011
  12. [12] B. FUGLEDE, Capacity as a sublinear functional generalizing an integral, Danske Vid. Selsk. Mat. -Fys. Medd., 38 (1971), 1-44. Zbl0222.31002MR45 #579
  13. [13] P.R. HALMOS, Measure Theory. Van Nostrand 1950. Zbl0040.16802MR11,504d
  14. [14] A. HORN and A. TARSKI, Measures on Boolean algebras, Trans. Amer. Math. Soc., 64 (1948), 467-497. Zbl0035.03001MR10,518h
  15. [15] P.J. HUBER and V. STRASSEN, Minimax tests and the Neyman-Pearson lemma for capacities, Ann. Statist., 1 (1973), 251-263. Zbl0259.62008MR50 #8776
  16. [16] J. KINDLER, A MAZUR-ORLICZtype theorem for submodular set functions, J. Math. Analysis Appl., 120 (1986), 533-546. Zbl0605.28004MR88a:28014
  17. [17] H. KÖNIG, On the abstract Hahn-Banach theorem due to Rodé, Aequat. Math., 34 (1987), 89-95. Zbl0636.46005MR89f:46010
  18. [18] H. KÖNIG, Measure and Integration: An Advanced Course in Basic Procedures and Applications, Springer, 1997. Zbl0887.28001
  19. [19] H. KÖNIG, Image measures and the so-called image measure catastrophe, Positivity, 1 (1997), 255-270. Zbl0911.28003MR2000j:28002
  20. [20] H. KÖNIG, What are signed contents and measures? Math. Nachr., 204 (1999), 101-124. Zbl0929.28002MR2000k:28003
  21. [21] H. KÖNIG, The product theory for inner premeasures, Note di Mat., to appear. Zbl0969.28002
  22. [22] H. KÖNIG, Measure and integration: Comparaison of old and new procedures, Arch. Math., 72 (1999), 192-205. Zbl0924.28007
  23. [23] H. KÖNIG, Measure and integration: Mutual generation of outer and inner premeasures, Annales Univ. Saraviensis, Ser. Math., 9 (1998), 99-122. Zbl0942.28006MR2000g:28009
  24. [24] H. KÖNIG, Measure and integration: Integral representations of isotone functionals, Annales Univ. Saraviensis, Ser. Math., 9 (1998), 123-153. Zbl0933.28001MR2000g:28027
  25. [25] G. RODÉ, Eine abstrakte Version des Satzes von Hahn-Banach, Arch. Math., 31 (1978), 474-481. Zbl0402.46003MR80g:46009
  26. [26] V. STRASSEN, Meßfehler und Information, Z. Wahrsch. Verw. Geb., 2 (1964), 273-305. Zbl0131.36402MR29 #2120
  27. [27] F. TOPSØE, Topology and Measure, Lecture Notes Math., 133, Springer, 1970. Zbl0197.33301
  28. [28] F. TOPSØE, On construction of measures, in: Topology and Measure I (Zinnowitz 1974) Part 2, 343-381, Univ. Greifswald 1978. Zbl0412.28002
  29. [29] F. TOPSØE, Radon measures, some basic constructions, in: Lecture Notes Math., 1033, 303-311, Springer, 1983. Zbl0525.28011MR85g:28013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.