The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Gliomas are highly invasive brain tumors that exhibit high and spatially heterogeneous
cell proliferation and motility rates. The interplay of proliferation and migration
dynamics plays an important role in the invasion of these malignant tumors. We analyze the
regulation of proliferation and migration processes with a lattice-gas cellular automaton
(LGCA). We study and characterize the influence of the migration/proliferation dichotomy
(also known...
Download Results (CSV)