Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Continua which admit no mean

K. KawamuraE. Tymchatyn — 1996

Colloquium Mathematicae

A symmetric, idempotent, continuous binary operation on a space is called a mean. In this paper, we provide a criterion for the non-existence of mean on a certain class of continua which includes tree-like continua. This generalizes a result of Bell and Watson. We also prove that any hereditarily indecomposable circle-like continuum admits no mean.

Hereditarily indecomposable inverse limits of graphs

K. KawamuraH. M. TuncaliE. D. Tymchatyn — 2005

Fundamenta Mathematicae

We prove the following theorem: Let G be a compact connected graph and let f: G → G be a piecewise linear surjection which satisfies the following condition: for each nondegenerate subcontinuum A of G, there is a positive integer n such that fⁿ(A) = G. Then, for each ε > 0, there is a map f ε : G G which is ε-close to f such that the inverse limit ( G , f ε ) is hereditarily indecomposable.

Page 1

Download Results (CSV)