Hereditarily indecomposable inverse limits of graphs
K. Kawamura; H. M. Tuncali; E. D. Tymchatyn
Fundamenta Mathematicae (2005)
- Volume: 185, Issue: 3, page 195-210
 - ISSN: 0016-2736
 
Access Full Article
topAbstract
topHow to cite
topK. Kawamura, H. M. Tuncali, and E. D. Tymchatyn. "Hereditarily indecomposable inverse limits of graphs." Fundamenta Mathematicae 185.3 (2005): 195-210. <http://eudml.org/doc/283292>.
@article{K2005,
	abstract = {We prove the following theorem: Let G be a compact connected graph and let f: G → G be a piecewise linear surjection which satisfies the following condition: for each nondegenerate subcontinuum A of G, there is a positive integer n such that fⁿ(A) = G. Then, for each ε > 0, there is a map $f_\{ε\}: G → G$ which is ε-close to f such that the inverse limit $(G,f_\{ε\})$ is hereditarily indecomposable.},
	author = {K. Kawamura, H. M. Tuncali, E. D. Tymchatyn},
	journal = {Fundamenta Mathematicae},
	keywords = {graph; hereditarily indecomposable; inverse limit},
	language = {eng},
	number = {3},
	pages = {195-210},
	title = {Hereditarily indecomposable inverse limits of graphs},
	url = {http://eudml.org/doc/283292},
	volume = {185},
	year = {2005},
}
TY  - JOUR
AU  - K. Kawamura
AU  - H. M. Tuncali
AU  - E. D. Tymchatyn
TI  - Hereditarily indecomposable inverse limits of graphs
JO  - Fundamenta Mathematicae
PY  - 2005
VL  - 185
IS  - 3
SP  - 195
EP  - 210
AB  - We prove the following theorem: Let G be a compact connected graph and let f: G → G be a piecewise linear surjection which satisfies the following condition: for each nondegenerate subcontinuum A of G, there is a positive integer n such that fⁿ(A) = G. Then, for each ε > 0, there is a map $f_{ε}: G → G$ which is ε-close to f such that the inverse limit $(G,f_{ε})$ is hereditarily indecomposable.
LA  - eng
KW  - graph; hereditarily indecomposable; inverse limit
UR  - http://eudml.org/doc/283292
ER  - 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.