Hereditarily indecomposable inverse limits of graphs
K. Kawamura; H. M. Tuncali; E. D. Tymchatyn
Fundamenta Mathematicae (2005)
- Volume: 185, Issue: 3, page 195-210
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topK. Kawamura, H. M. Tuncali, and E. D. Tymchatyn. "Hereditarily indecomposable inverse limits of graphs." Fundamenta Mathematicae 185.3 (2005): 195-210. <http://eudml.org/doc/283292>.
@article{K2005,
abstract = {We prove the following theorem: Let G be a compact connected graph and let f: G → G be a piecewise linear surjection which satisfies the following condition: for each nondegenerate subcontinuum A of G, there is a positive integer n such that fⁿ(A) = G. Then, for each ε > 0, there is a map $f_\{ε\}: G → G$ which is ε-close to f such that the inverse limit $(G,f_\{ε\})$ is hereditarily indecomposable.},
author = {K. Kawamura, H. M. Tuncali, E. D. Tymchatyn},
journal = {Fundamenta Mathematicae},
keywords = {graph; hereditarily indecomposable; inverse limit},
language = {eng},
number = {3},
pages = {195-210},
title = {Hereditarily indecomposable inverse limits of graphs},
url = {http://eudml.org/doc/283292},
volume = {185},
year = {2005},
}
TY - JOUR
AU - K. Kawamura
AU - H. M. Tuncali
AU - E. D. Tymchatyn
TI - Hereditarily indecomposable inverse limits of graphs
JO - Fundamenta Mathematicae
PY - 2005
VL - 185
IS - 3
SP - 195
EP - 210
AB - We prove the following theorem: Let G be a compact connected graph and let f: G → G be a piecewise linear surjection which satisfies the following condition: for each nondegenerate subcontinuum A of G, there is a positive integer n such that fⁿ(A) = G. Then, for each ε > 0, there is a map $f_{ε}: G → G$ which is ε-close to f such that the inverse limit $(G,f_{ε})$ is hereditarily indecomposable.
LA - eng
KW - graph; hereditarily indecomposable; inverse limit
UR - http://eudml.org/doc/283292
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.