The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Continuous wavelet transform on semisimple Lie groups and inversion of the Abel transform and its dual.

K. Trimèche — 1996

Collectanea Mathematica

In this work we define and study wavelets and continuous wavelet transform on semisimple Lie groups G of real rank l. We prove for this transform Plancherel and inversion formulas. Next using the Abel transform A on G and its dual A*, we give relations between the continuous wavelet transform on G and the classical continuous wavelet transform on Rl, and we deduce the formulas which give the inverse operators of the operators A and A*.

La g -fonction de Littlewood-Paley associée à un opérateur différentiel singulier sur ( 0 , )

A. AchourK. Trimeche — 1983

Annales de l'institut Fourier

Dans son livre [H. Stein, Ann. of Math. Studies, 63, Princeton Univ. Press, (1970)] E. Stein associe à tout opérateur de Sturm-Liouville la g -fonction de Littlewood-Paley et conjecture que, pour tout p dans l’intervalle ] 1 , [ , il existe deux constantes C p et D p telles que : C p f p g ( f ) p D p f p . On démontre ces inégalités pour une classe d’opérateurs différentiels singuliers sur ] 0 , [ et on énonce alors un résultat sur les multiplicateurs concernant ces opérateurs.

Page 1

Download Results (CSV)