The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Random walks on the affine group of local fields and of homogeneous trees

Donald I. CartwrightVadim A. KaimanovichWolfgang Woess — 1994

Annales de l'institut Fourier

The affine group of a local field acts on the tree 𝕋 ( 𝔉 ) (the Bruhat-Tits building of GL ( 2 , 𝔉 ) ) with a fixed point in the space of ends 𝕋 ( F ) . More generally, we define the affine group Aff ( 𝔉 ) of any homogeneous tree 𝕋 as the group of all automorphisms of 𝕋 with a common fixed point in 𝕋 , and establish main asymptotic properties of random products in Aff ( 𝔉 ) : (1) law of large numbers and central limit theorem; (2) convergence to 𝕋 and solvability of the Dirichlet problem at infinity; (3) identification of the Poisson boundary...

Page 1

Download Results (CSV)