Random walks on the affine group of local fields and of homogeneous trees
Donald I. Cartwright; Vadim A. Kaimanovich; Wolfgang Woess
Annales de l'institut Fourier (1994)
- Volume: 44, Issue: 4, page 1243-1288
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCartwright, Donald I., Kaimanovich, Vadim A., and Woess, Wolfgang. "Random walks on the affine group of local fields and of homogeneous trees." Annales de l'institut Fourier 44.4 (1994): 1243-1288. <http://eudml.org/doc/75096>.
@article{Cartwright1994,
abstract = {The affine group of a local field acts on the tree $\{\Bbb T\}(\{\frak F\})$ (the Bruhat-Tits building of $\{\rm GL\} (2,\{\frak F\})$) with a fixed point in the space of ends $\partial \{\Bbb T\}(F)$. More generally, we define the affine group $\operatorname\{Aff\}(\{\frak F\})$ of any homogeneous tree $\{\Bbb T\}$ as the group of all automorphisms of $\{\Bbb T\}$ with a common fixed point in $\partial \{\Bbb T\}$, and establish main asymptotic properties of random products in $\operatorname\{Aff\} (\{\frak F\})$: (1) law of large numbers and central limit theorem; (2) convergence to $\partial \{\Bbb T\}$ and solvability of the Dirichlet problem at infinity; (3) identification of the Poisson boundary with $\partial \{\Bbb T\}$, which gives a description of the space of bounded $\mu $-harmonic functions. Our methods strongly rely on geometric properties of homogeneous trees as discrete counterparts of rank one symmetric spaces.},
author = {Cartwright, Donald I., Kaimanovich, Vadim A., Woess, Wolfgang},
journal = {Annales de l'institut Fourier},
keywords = {random walks; law of large numbers; central limit theorem; harmonic functions; asymptotic properties of random products; Dirichlet problem; Poisson boundary; geometric properties of homogeneous trees},
language = {eng},
number = {4},
pages = {1243-1288},
publisher = {Association des Annales de l'Institut Fourier},
title = {Random walks on the affine group of local fields and of homogeneous trees},
url = {http://eudml.org/doc/75096},
volume = {44},
year = {1994},
}
TY - JOUR
AU - Cartwright, Donald I.
AU - Kaimanovich, Vadim A.
AU - Woess, Wolfgang
TI - Random walks on the affine group of local fields and of homogeneous trees
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 4
SP - 1243
EP - 1288
AB - The affine group of a local field acts on the tree ${\Bbb T}({\frak F})$ (the Bruhat-Tits building of ${\rm GL} (2,{\frak F})$) with a fixed point in the space of ends $\partial {\Bbb T}(F)$. More generally, we define the affine group $\operatorname{Aff}({\frak F})$ of any homogeneous tree ${\Bbb T}$ as the group of all automorphisms of ${\Bbb T}$ with a common fixed point in $\partial {\Bbb T}$, and establish main asymptotic properties of random products in $\operatorname{Aff} ({\frak F})$: (1) law of large numbers and central limit theorem; (2) convergence to $\partial {\Bbb T}$ and solvability of the Dirichlet problem at infinity; (3) identification of the Poisson boundary with $\partial {\Bbb T}$, which gives a description of the space of bounded $\mu $-harmonic functions. Our methods strongly rely on geometric properties of homogeneous trees as discrete counterparts of rank one symmetric spaces.
LA - eng
KW - random walks; law of large numbers; central limit theorem; harmonic functions; asymptotic properties of random products; Dirichlet problem; Poisson boundary; geometric properties of homogeneous trees
UR - http://eudml.org/doc/75096
ER -
References
top- [Az] R. AZENCOTT, Espaces de Poisson des Groupes Localement Compacts, Lect. Notes in Math., 148, Springer Berlin, 1970. Zbl0208.15302MR58 #18748
- [Be] A.F. BEARDON, The Geometry of Discrete Groups, Springer New York, 1983. Zbl0528.30001MR85d:22026
- [Bi] P. BILLINGSLEY, Convergence of Probability Measures, Wiley, New York, 1968. Zbl0172.21201MR38 #1718
- [CS] D.I. CARTWRIGHT and P.M. SOARDI, Convergence to ends for random walks on the automorphism group of a tree, Proc. Amer. Math. Soc., 107 (1989), 817-823. Zbl0682.60059MR90f:60137
- [Ca] J.W.S. CASSELS, Local Fields, Cambridge University Press, Cambridge, 1986. Zbl0595.12006MR87i:11172
- [Ch] F. CHOUCROUN, Arbres, espaces ultramétriques, et bases de structure uniforme, Groupes d'Automorphismes d'Arbres, Thèse, Univ. Paris-Sud, 1993, p. 173-177.
- [De] Y. DERRIENNIC, Quelques applications du théorème ergodique sous-additif, Astérisque, 74 (1980), 183-201. Zbl0446.60059MR82e:60013
- [E1] L. ÉLIE, Étude du renouvellement sur le groupe affine de la droite réelle, Ann. Sci. Univ. Clermont, 65 (1977), 47-62. Zbl0384.60010MR58 #13364
- [E2] L. ÉLIE, Fonctions harmoniques positives sur le groupe affine, Probability Measures on Groups (H. Heyer, ed.), Lect. Notes in Math., 706, Springer, Berlin, 1978, 96-110. Zbl0404.60076MR81a:60083
- [E3] L. ÉLIE, Comportement asymptotique du noyau potentiel sur les groupes de Lie, Annales Éc. Norm. Sup., 15 (1982), 257-364. Zbl0509.60070MR85b:60005
- [Fe] W. FELLER, An Introduction to Probability Theory and its Applications, Vol II, Wiley, New York, 1966. Zbl0138.10207MR35 #1048
- [Fi] A. FIGÀ-TALAMANCA, An example in finite harmonic analysis with application to diffusion in compact ultrametric spaces, preprint, Univ. Roma "La Sapienza", 1992.
- [FN] A. FIGÀ-TALAMANCA and C. NEBBIA, Harmonic analysis and representation theory for groups acting on homogeneous trees, Cambridge Univ. Press, 1991. Zbl1154.22301
- [Fu] H. FURSTENBERG, Random walks and discrete subgroups of Lie groups, Advances in Probability and Related Topics, Vol. I (P. Ney, ed.), M. Dekker, New York, 1971, p. 1-63. Zbl0221.22008MR44 #1794
- [Ge] P. GÉRARDIN, Harmonic functions on buildings of reductive split groups, Operator Algebras and Group Representations 1, Pitman, Boston, 1984, p. 208-221. Zbl0536.22018MR86f:22020
- [Gre] U. GRENANDER, Stochastic groups, Ark. Mat., 4 (1961), 189-207. Zbl0141.14904MR26 #798
- [G1] A.K. GRINCEVIČJUS, A central limit theorem for the group of linear transformations of the real axis, Soviet Math. Doklady, 15 (1974), 1512-1515. Zbl0326.60021
- [G2] A.K. GRINCEVIČJUS, Limit theorems for products of random linear transformations of a straight line (in Russian), Lithuanian Math. J., 15 (1975), 61-77. Zbl0362.60018MR54 #1333
- [Gro] M. GROMOV, Hyperbolic groups, Essays in Group Theory (S.M. Gersten, ed.), Math. Sci. Res. Inst. Publ., 8, Springer, New York, 1987, 75-263. Zbl0634.20015MR89e:20070
- [Gui] F. GUIMIER, Simplicité du spectre de Liapounoff d'un produit de matrices aléatoires sur un corps ultramétrique, C. R. Acad. Sc. Paris, 309 (1989), 885-888. Zbl0696.60009MR91d:28030
- [Gu] Y. GUIVARC'H, Sur la loi des grands nombres et le rayon spectral d'une marche aléatoire, Astérisque, 74 (1980), 47-98. Zbl0448.60007MR82g:60016
- [GKR] Y. GUIVARC'H, M. KEANE and B. ROYNETTE, Marches Aléatoires sur les Groupes de Lie, Lecture Notes in Math., 624, Springer Berlin-Heidelberg-New York, 1977. Zbl0367.60081MR58 #24454
- [dH] P. DE LA HARPE, Free groups in linear groups, L'Enseignement Math., 29 (1983), 129-144. Zbl0517.20024MR84i:20050
- [K1] V.A. KAIMANOVICH, An entropy criterion for maximality of the boundary of random walks on discrete groups, Soviet Math. Doklady, 31 (1985), 193-197. Zbl0611.60060MR86m:60025
- [K2] V.A. KAIMANOVICH, Lyapunov exponents, symmetric spaces and multiplicative ergodic theorem for semi-simple Lie groups, J. Soviet Math., 47 (1989), 2387-2398. Zbl0696.22012MR89m:22006
- [K3] V.A. KAIMANOVICH, Poisson boundaries of random walks on discrete solvable groups, Probability Measures on Groups X (H. Heyer, ed.), Plenum Press, New York, 1991, p. 205-238. Zbl0823.60006MR94m:60014
- [K4] V.A. KAIMANOVICH, Measure-theoretic boundaries of Markov chains, 0-2 laws and entropy, Harmonic Analysis and Discrete Potential Theory (M.A. Picardello, ed.), Plenum Press, New York, 1992, p. 145-180.
- [K5] V.A. KAIMANOVICH, Boundaries of random walks revisited, in preparation, Univ. Edinburgh.
- [Ki] J.F.C. KINGMAN, The ergodic theory of subadditive processes, J. Royal Stat. Soc., Ser. B, 30 (1968), 499-510. Zbl0182.22802MR40 #8114
- [Ma] G.A. MARGULIS, Discrete Subgroups of Semisimple Lie Groups (Erg. Math. Grenzgeb., 3. Folge, Band 17), Springer, New York, 1989.
- [Mo] S.A. MOLCHANOV, Martin boundaries for invariant Markov processes on a solvable group, Theory of Probability and Appl., 12 (1967), 310-314. Zbl0308.60044
- [Ne] C. NEBBIA, On the amenability and the Kunze-Stein property for groups acting on a tree, Pacific J. Math., 135 (1988), 371-380. Zbl0671.43003MR90f:43004
- [Rag] M.S. RAGHUNATHAN, A proof of Oseledec's multiplicative ergodic theorem, Israel J. Math., 32 (1979), 356-362. Zbl0415.28013MR81f:60016
- [Rau] A. RAUGI, Fonctions harmoniques et théorèmes limites pour les marches aléatoires sur les groupes, Mém. Bull. Soc. Math. France, 54 (1977), 5-118.
- [Sch] G. SCHLICHTING, Polynomidentitäten und Permutationsdarstellungen lokalkompakter Gruppen, Inventiones Math., 55 (1979), 97-106. Zbl0426.22007MR81d:22006
- [S1] J.-P. SERRE, Local Fields, Springer, New York, 1979.
- [S2] J.-P. SERRE, Trees, Springer, New York, 1980.
- [Sp] F. SPITZER, Principles of Random Walk, (2nd ed.), Springer, New York, 1976. Zbl0359.60003MR52 #9383
- [SW] P.M. SOARDI and W. WOESS, Amenability, unimodularity, and the spectral radius of random walks on infinite graphs, Math. Zeitschr., 205 (1990), 471-486. Zbl0693.43001MR91m:43002
- [Ti] J. TITS, Sur le groupe des automorphismes d'un arbre, Essays in Topology and Related Topics (mémoires dédiés a G. de Rham), Springer, Berlin, 1970, p. 188-211. Zbl0214.51301MR45 #8582
- [Tr] V.I. TROFIMOV, Automorphism groups of graphs as topological groups, Math. Notes, 38 (1985), 717-720. Zbl0596.05033MR87d:05091
- [W1] W. WOESS, Boundaries of random walks on graphs and groups with infinitely many ends, Israel J. Math., 68 (1989), 271-301. Zbl0723.60009MR91e:60222
- [W2] W. WOESS, Random walks on infinite graphs and groups: a survey on selected topics, Bull. London Math. Soc., 26 (1994), 1-60. Zbl0830.60061MR94i:60081
- [W3] W. WOESS, The Martin boundary of random walks on the automorphism group of a homogeneous tree, print Univ. Milano.
Citations in EuDML Documents
top- Wolfgang Woess, Heat diffusion on homogeneous trees (Note on a paper by G. Medolla and A. G. Setti)
- Sara Brofferio, The Poisson boundary of random rational affinities
- Sara Brofferio, Wolfgang Woess, Green kernel estimates and the full Martin boundary for random walks on lamplighter groups and Diestel–Leader graphs
- Sara Brofferio, How a centred random walk on the affine group goes to infinity
- Sara Brofferio, Dariusz Buraczewski, Ewa Damek, On the invariant measure of the random difference equation Xn = AnXn−1 + Bn in the critical case
- Bruno Schapira, Poisson boundary of triangular matrices in a number field
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.