Random walks on the affine group of local fields and of homogeneous trees

Donald I. Cartwright; Vadim A. Kaimanovich; Wolfgang Woess

Annales de l'institut Fourier (1994)

  • Volume: 44, Issue: 4, page 1243-1288
  • ISSN: 0373-0956

Abstract

top
The affine group of a local field acts on the tree 𝕋 ( 𝔉 ) (the Bruhat-Tits building of GL ( 2 , 𝔉 ) ) with a fixed point in the space of ends 𝕋 ( F ) . More generally, we define the affine group Aff ( 𝔉 ) of any homogeneous tree 𝕋 as the group of all automorphisms of 𝕋 with a common fixed point in 𝕋 , and establish main asymptotic properties of random products in Aff ( 𝔉 ) : (1) law of large numbers and central limit theorem; (2) convergence to 𝕋 and solvability of the Dirichlet problem at infinity; (3) identification of the Poisson boundary with 𝕋 , which gives a description of the space of bounded μ -harmonic functions. Our methods strongly rely on geometric properties of homogeneous trees as discrete counterparts of rank one symmetric spaces.

How to cite

top

Cartwright, Donald I., Kaimanovich, Vadim A., and Woess, Wolfgang. "Random walks on the affine group of local fields and of homogeneous trees." Annales de l'institut Fourier 44.4 (1994): 1243-1288. <http://eudml.org/doc/75096>.

@article{Cartwright1994,
abstract = {The affine group of a local field acts on the tree $\{\Bbb T\}(\{\frak F\})$ (the Bruhat-Tits building of $\{\rm GL\} (2,\{\frak F\})$) with a fixed point in the space of ends $\partial \{\Bbb T\}(F)$. More generally, we define the affine group $\operatorname\{Aff\}(\{\frak F\})$ of any homogeneous tree $\{\Bbb T\}$ as the group of all automorphisms of $\{\Bbb T\}$ with a common fixed point in $\partial \{\Bbb T\}$, and establish main asymptotic properties of random products in $\operatorname\{Aff\} (\{\frak F\})$: (1) law of large numbers and central limit theorem; (2) convergence to $\partial \{\Bbb T\}$ and solvability of the Dirichlet problem at infinity; (3) identification of the Poisson boundary with $\partial \{\Bbb T\}$, which gives a description of the space of bounded $\mu $-harmonic functions. Our methods strongly rely on geometric properties of homogeneous trees as discrete counterparts of rank one symmetric spaces.},
author = {Cartwright, Donald I., Kaimanovich, Vadim A., Woess, Wolfgang},
journal = {Annales de l'institut Fourier},
keywords = {random walks; law of large numbers; central limit theorem; harmonic functions; asymptotic properties of random products; Dirichlet problem; Poisson boundary; geometric properties of homogeneous trees},
language = {eng},
number = {4},
pages = {1243-1288},
publisher = {Association des Annales de l'Institut Fourier},
title = {Random walks on the affine group of local fields and of homogeneous trees},
url = {http://eudml.org/doc/75096},
volume = {44},
year = {1994},
}

TY - JOUR
AU - Cartwright, Donald I.
AU - Kaimanovich, Vadim A.
AU - Woess, Wolfgang
TI - Random walks on the affine group of local fields and of homogeneous trees
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 4
SP - 1243
EP - 1288
AB - The affine group of a local field acts on the tree ${\Bbb T}({\frak F})$ (the Bruhat-Tits building of ${\rm GL} (2,{\frak F})$) with a fixed point in the space of ends $\partial {\Bbb T}(F)$. More generally, we define the affine group $\operatorname{Aff}({\frak F})$ of any homogeneous tree ${\Bbb T}$ as the group of all automorphisms of ${\Bbb T}$ with a common fixed point in $\partial {\Bbb T}$, and establish main asymptotic properties of random products in $\operatorname{Aff} ({\frak F})$: (1) law of large numbers and central limit theorem; (2) convergence to $\partial {\Bbb T}$ and solvability of the Dirichlet problem at infinity; (3) identification of the Poisson boundary with $\partial {\Bbb T}$, which gives a description of the space of bounded $\mu $-harmonic functions. Our methods strongly rely on geometric properties of homogeneous trees as discrete counterparts of rank one symmetric spaces.
LA - eng
KW - random walks; law of large numbers; central limit theorem; harmonic functions; asymptotic properties of random products; Dirichlet problem; Poisson boundary; geometric properties of homogeneous trees
UR - http://eudml.org/doc/75096
ER -

References

top
  1. [Az] R. AZENCOTT, Espaces de Poisson des Groupes Localement Compacts, Lect. Notes in Math., 148, Springer Berlin, 1970. Zbl0208.15302MR58 #18748
  2. [Be] A.F. BEARDON, The Geometry of Discrete Groups, Springer New York, 1983. Zbl0528.30001MR85d:22026
  3. [Bi] P. BILLINGSLEY, Convergence of Probability Measures, Wiley, New York, 1968. Zbl0172.21201MR38 #1718
  4. [CS] D.I. CARTWRIGHT and P.M. SOARDI, Convergence to ends for random walks on the automorphism group of a tree, Proc. Amer. Math. Soc., 107 (1989), 817-823. Zbl0682.60059MR90f:60137
  5. [Ca] J.W.S. CASSELS, Local Fields, Cambridge University Press, Cambridge, 1986. Zbl0595.12006MR87i:11172
  6. [Ch] F. CHOUCROUN, Arbres, espaces ultramétriques, et bases de structure uniforme, Groupes d'Automorphismes d'Arbres, Thèse, Univ. Paris-Sud, 1993, p. 173-177. 
  7. [De] Y. DERRIENNIC, Quelques applications du théorème ergodique sous-additif, Astérisque, 74 (1980), 183-201. Zbl0446.60059MR82e:60013
  8. [E1] L. ÉLIE, Étude du renouvellement sur le groupe affine de la droite réelle, Ann. Sci. Univ. Clermont, 65 (1977), 47-62. Zbl0384.60010MR58 #13364
  9. [E2] L. ÉLIE, Fonctions harmoniques positives sur le groupe affine, Probability Measures on Groups (H. Heyer, ed.), Lect. Notes in Math., 706, Springer, Berlin, 1978, 96-110. Zbl0404.60076MR81a:60083
  10. [E3] L. ÉLIE, Comportement asymptotique du noyau potentiel sur les groupes de Lie, Annales Éc. Norm. Sup., 15 (1982), 257-364. Zbl0509.60070MR85b:60005
  11. [Fe] W. FELLER, An Introduction to Probability Theory and its Applications, Vol II, Wiley, New York, 1966. Zbl0138.10207MR35 #1048
  12. [Fi] A. FIGÀ-TALAMANCA, An example in finite harmonic analysis with application to diffusion in compact ultrametric spaces, preprint, Univ. Roma "La Sapienza", 1992. 
  13. [FN] A. FIGÀ-TALAMANCA and C. NEBBIA, Harmonic analysis and representation theory for groups acting on homogeneous trees, Cambridge Univ. Press, 1991. Zbl1154.22301
  14. [Fu] H. FURSTENBERG, Random walks and discrete subgroups of Lie groups, Advances in Probability and Related Topics, Vol. I (P. Ney, ed.), M. Dekker, New York, 1971, p. 1-63. Zbl0221.22008MR44 #1794
  15. [Ge] P. GÉRARDIN, Harmonic functions on buildings of reductive split groups, Operator Algebras and Group Representations 1, Pitman, Boston, 1984, p. 208-221. Zbl0536.22018MR86f:22020
  16. [Gre] U. GRENANDER, Stochastic groups, Ark. Mat., 4 (1961), 189-207. Zbl0141.14904MR26 #798
  17. [G1] A.K. GRINCEVIČJUS, A central limit theorem for the group of linear transformations of the real axis, Soviet Math. Doklady, 15 (1974), 1512-1515. Zbl0326.60021
  18. [G2] A.K. GRINCEVIČJUS, Limit theorems for products of random linear transformations of a straight line (in Russian), Lithuanian Math. J., 15 (1975), 61-77. Zbl0362.60018MR54 #1333
  19. [Gro] M. GROMOV, Hyperbolic groups, Essays in Group Theory (S.M. Gersten, ed.), Math. Sci. Res. Inst. Publ., 8, Springer, New York, 1987, 75-263. Zbl0634.20015MR89e:20070
  20. [Gui] F. GUIMIER, Simplicité du spectre de Liapounoff d'un produit de matrices aléatoires sur un corps ultramétrique, C. R. Acad. Sc. Paris, 309 (1989), 885-888. Zbl0696.60009MR91d:28030
  21. [Gu] Y. GUIVARC'H, Sur la loi des grands nombres et le rayon spectral d'une marche aléatoire, Astérisque, 74 (1980), 47-98. Zbl0448.60007MR82g:60016
  22. [GKR] Y. GUIVARC'H, M. KEANE and B. ROYNETTE, Marches Aléatoires sur les Groupes de Lie, Lecture Notes in Math., 624, Springer Berlin-Heidelberg-New York, 1977. Zbl0367.60081MR58 #24454
  23. [dH] P. DE LA HARPE, Free groups in linear groups, L'Enseignement Math., 29 (1983), 129-144. Zbl0517.20024MR84i:20050
  24. [K1] V.A. KAIMANOVICH, An entropy criterion for maximality of the boundary of random walks on discrete groups, Soviet Math. Doklady, 31 (1985), 193-197. Zbl0611.60060MR86m:60025
  25. [K2] V.A. KAIMANOVICH, Lyapunov exponents, symmetric spaces and multiplicative ergodic theorem for semi-simple Lie groups, J. Soviet Math., 47 (1989), 2387-2398. Zbl0696.22012MR89m:22006
  26. [K3] V.A. KAIMANOVICH, Poisson boundaries of random walks on discrete solvable groups, Probability Measures on Groups X (H. Heyer, ed.), Plenum Press, New York, 1991, p. 205-238. Zbl0823.60006MR94m:60014
  27. [K4] V.A. KAIMANOVICH, Measure-theoretic boundaries of Markov chains, 0-2 laws and entropy, Harmonic Analysis and Discrete Potential Theory (M.A. Picardello, ed.), Plenum Press, New York, 1992, p. 145-180. 
  28. [K5] V.A. KAIMANOVICH, Boundaries of random walks revisited, in preparation, Univ. Edinburgh. 
  29. [Ki] J.F.C. KINGMAN, The ergodic theory of subadditive processes, J. Royal Stat. Soc., Ser. B, 30 (1968), 499-510. Zbl0182.22802MR40 #8114
  30. [Ma] G.A. MARGULIS, Discrete Subgroups of Semisimple Lie Groups (Erg. Math. Grenzgeb., 3. Folge, Band 17), Springer, New York, 1989. 
  31. [Mo] S.A. MOLCHANOV, Martin boundaries for invariant Markov processes on a solvable group, Theory of Probability and Appl., 12 (1967), 310-314. Zbl0308.60044
  32. [Ne] C. NEBBIA, On the amenability and the Kunze-Stein property for groups acting on a tree, Pacific J. Math., 135 (1988), 371-380. Zbl0671.43003MR90f:43004
  33. [Rag] M.S. RAGHUNATHAN, A proof of Oseledec's multiplicative ergodic theorem, Israel J. Math., 32 (1979), 356-362. Zbl0415.28013MR81f:60016
  34. [Rau] A. RAUGI, Fonctions harmoniques et théorèmes limites pour les marches aléatoires sur les groupes, Mém. Bull. Soc. Math. France, 54 (1977), 5-118. 
  35. [Sch] G. SCHLICHTING, Polynomidentitäten und Permutationsdarstellungen lokalkompakter Gruppen, Inventiones Math., 55 (1979), 97-106. Zbl0426.22007MR81d:22006
  36. [S1] J.-P. SERRE, Local Fields, Springer, New York, 1979. 
  37. [S2] J.-P. SERRE, Trees, Springer, New York, 1980. 
  38. [Sp] F. SPITZER, Principles of Random Walk, (2nd ed.), Springer, New York, 1976. Zbl0359.60003MR52 #9383
  39. [SW] P.M. SOARDI and W. WOESS, Amenability, unimodularity, and the spectral radius of random walks on infinite graphs, Math. Zeitschr., 205 (1990), 471-486. Zbl0693.43001MR91m:43002
  40. [Ti] J. TITS, Sur le groupe des automorphismes d'un arbre, Essays in Topology and Related Topics (mémoires dédiés a G. de Rham), Springer, Berlin, 1970, p. 188-211. Zbl0214.51301MR45 #8582
  41. [Tr] V.I. TROFIMOV, Automorphism groups of graphs as topological groups, Math. Notes, 38 (1985), 717-720. Zbl0596.05033MR87d:05091
  42. [W1] W. WOESS, Boundaries of random walks on graphs and groups with infinitely many ends, Israel J. Math., 68 (1989), 271-301. Zbl0723.60009MR91e:60222
  43. [W2] W. WOESS, Random walks on infinite graphs and groups: a survey on selected topics, Bull. London Math. Soc., 26 (1994), 1-60. Zbl0830.60061MR94i:60081
  44. [W3] W. WOESS, The Martin boundary of random walks on the automorphism group of a homogeneous tree, print Univ. Milano. 

Citations in EuDML Documents

top
  1. Wolfgang Woess, Heat diffusion on homogeneous trees (Note on a paper by G. Medolla and A. G. Setti)
  2. Sara Brofferio, The Poisson boundary of random rational affinities
  3. Sara Brofferio, Wolfgang Woess, Green kernel estimates and the full Martin boundary for random walks on lamplighter groups and Diestel–Leader graphs
  4. Sara Brofferio, How a centred random walk on the affine group goes to infinity
  5. Sara Brofferio, Dariusz Buraczewski, Ewa Damek, On the invariant measure of the random difference equation Xn = AnXn−1 + Bn in the critical case
  6. Bruno Schapira, Poisson boundary of triangular matrices in a number field

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.