The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove that the exceptional complex Lie group has a transitive action on the hyperplane section of the complex Cayley plane . Although the result itself is not new, our proof is elementary and constructive. We use an explicit realization of the vector and spin actions of . Moreover, we identify the stabilizer of the -action as a parabolic subgroup (with Levi factor ) of the complex Lie group . In the real case we obtain an analogous realization of .
Download Results (CSV)