Fractional integro-differentiation in harmonic mixed norm spaces on a half-space
In this paper some embedding theorems related to fractional integration and differentiation in harmonic mixed norm spaces on the half-space are established. We prove that mixed norm is equivalent to a “fractional derivative norm” and that harmonic conjugation is bounded in for the range , . As an application of the above, we give a characterization of by means of an integral representation with the use of Besov spaces.