Fractional integro-differentiation in harmonic mixed norm spaces on a half-space
Commentationes Mathematicae Universitatis Carolinae (2001)
- Volume: 42, Issue: 4, page 691-709
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAvetisyan, Karen L.. "Fractional integro-differentiation in harmonic mixed norm spaces on a half-space." Commentationes Mathematicae Universitatis Carolinae 42.4 (2001): 691-709. <http://eudml.org/doc/248800>.
@article{Avetisyan2001,
abstract = {In this paper some embedding theorems related to fractional integration and differentiation in harmonic mixed norm spaces $h(p,q,\alpha )$ on the half-space are established. We prove that mixed norm is equivalent to a “fractional derivative norm” and that harmonic conjugation is bounded in $h(p,q,\alpha )$ for the range $0<p\le \infty $, $0<q\le \infty $. As an application of the above, we give a characterization of $h(p,q,\alpha )$ by means of an integral representation with the use of Besov spaces.},
author = {Avetisyan, Karen L.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {embedding theorems; integral representations; conjugation; projections; mixed norm spaces; harmonic functions; fractional derivative; fractional integration},
language = {eng},
number = {4},
pages = {691-709},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Fractional integro-differentiation in harmonic mixed norm spaces on a half-space},
url = {http://eudml.org/doc/248800},
volume = {42},
year = {2001},
}
TY - JOUR
AU - Avetisyan, Karen L.
TI - Fractional integro-differentiation in harmonic mixed norm spaces on a half-space
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 4
SP - 691
EP - 709
AB - In this paper some embedding theorems related to fractional integration and differentiation in harmonic mixed norm spaces $h(p,q,\alpha )$ on the half-space are established. We prove that mixed norm is equivalent to a “fractional derivative norm” and that harmonic conjugation is bounded in $h(p,q,\alpha )$ for the range $0<p\le \infty $, $0<q\le \infty $. As an application of the above, we give a characterization of $h(p,q,\alpha )$ by means of an integral representation with the use of Besov spaces.
LA - eng
KW - embedding theorems; integral representations; conjugation; projections; mixed norm spaces; harmonic functions; fractional derivative; fractional integration
UR - http://eudml.org/doc/248800
ER -
References
top- Benedek A., Panzone R., The spaces , with mixed norm, Duke Math. J. 28 (1961), 301-324. (1961) MR0126155
- Bergman S., Über unendliche Hermitische Formen, die zu einem Bereiche gehören, nebst Anwendungen auf Fragen der Abbildung durch Funktionen von zwei komplexen Veränderlichen, Math. Z. 29 (1929), 641-677. (1929) MR1545028
- Bergman S., The Kernel Function and Conformal Mapping, Math. Surveys, No. 5, New York, 1950. Zbl0473.30006MR0038439
- Bui Huy Qui, Harmonic functions, Riesz potentials, and the Lipschitz spaces of Herz, Hiroshima Math. J. 9 (1979), 245-295. (1979) MR0529335
- Djrbashian A.E., The classes of harmonic functions in half-spaces and an analogue of M. Riesz’ theorem, Izv. Akad. Nauk Arm. SSR, Matematika 22 4 (1987), 386-398 (in Russian); English transl.: Soviet J. Contemp. Math. Anal. (Armenian Academy of Sciences) 22 (1987), no. 4, 74-85. (1987) MR0931892
- Djrbashian A.E., Karapetyan A.H., Integral inequalities between conjugate pluriharmonic functions in multidimensional domains, Izv. Akad. Nauk Arm. SSR, Matematika 23 (1988), 3 216-236 (in Russian); English transl.: Soviet J. Contemp. Math. Anal. (Armenian Academy of Sciences) 23 (1988), no. 3, 20-42. (1988) MR0976482
- Djrbashian A.E., Shamoyan F.A., Topics in the Theory of Spaces, Teubner-Texte zur Math., b. 105, Teubner, Leipzig, 1988. MR1021691
- Djrbashian M.M., On canonical representation of functions meromorphic in the unit disk, Dokl. Akad. Nauk Arm. SSR 3 (1945), 3-9 (in Russian). (1945)
- Djrbashian M.M., On the representation problem of analytic functions, Soobshch. Inst. Matem. Mekh. Akad. Nauk Arm. SSR 2 (1948), 3-40 (in Russian). (1948)
- Djrbashian M.M., Djrbashian A.E., Integral representation for some classes of functions in a half-plane, Dokl. Akad. Nauk SSSR 285 (1985), 547-550 (in Russian). (1985) MR0821337
- Fefferman C., Stein E.M., spaces of several variables, Acta Math. 129 (1972), 137-193. (1972) MR0447953
- Flett T.M., Mean values of power series, Pacific J. Math. 25 (1968), 463-494. (1968) Zbl0162.10002MR0229807
- Flett T.M., Inequalities for the th mean values of harmonic and subharmonic functions with , Proc. London Math. Soc. (3) 20 (1970), 249-275. (1970) MR0257387
- Flett T.M., On the rate of growth of mean values of holomorphic and harmonic functions, Proc. London Math. Soc. (3) 20 (1970), 749-768. (1970) Zbl0211.39203MR0268388
- Flett T.M., The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972), 746-765. (1972) Zbl0246.30031MR0304667
- Holmstedt T., Interpolation of quasi-normed spaces, Math. Scand. 26 (1970), 177-199. (1970) Zbl0193.08801MR0415352
- Ramey W.C., Yi H., Harmonic Bergman functions on half-spaces, Trans. Amer. Math. Soc. 348 (1996), 633-660. (1996) Zbl0848.31004MR1303125
- Ricci F., Taibleson M., Boundary values of harmonic functions in mixed norm spaces and their atomic structure, Annali Scuola Nor. Sup. - Pisa, Ser. IV, 10 (1983), 1-54. (1983) Zbl0527.30040MR0713108
- Shamoyan F.A., Applications of Djrbashian's integral representations to the certain problems of analysis, Dokl. Akad. Nauk SSSR 261 (1981), 3 557-561 (in Russian). (1981) MR0638930
- Shamoyan F.A., Some remarks on the parametric representation of Nevanlinna-Djrbashian classes, Mat. Zametki 52 (1992), 1 128-140 (in Russian); English transl.: Math. Notes 52 (1993), no. 1-2, 727-737. (1992) MR1187723
- Shi J.H., Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of , Trans. Amer. Math. Soc. 328 (1991), 619-637. (1991) MR1016807
- Stein E.M., Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, New Jersey, 1970. Zbl0281.44003MR0290095
- Taibleson M., On the theory of Lipschitz spaces of distributions on Euclidean -space, I. Principal properties, J. Math. Mech. 13 (1964), 407-479. (1964) MR0163159
- Yi H., Harmonic little Bloch functions on half-spaces, Math. Japonica 47 (1998), 21-28. (1998) Zbl0924.31003MR1606287
- Avetisyan K.L., Fractional integration and integral representations in weighted classes of harmonic functions, Analysis Math. 26 (2000), 161-174. (2000) Zbl0997.30030MR1792883
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.