Fractional integro-differentiation in harmonic mixed norm spaces on a half-space

Karen L. Avetisyan

Commentationes Mathematicae Universitatis Carolinae (2001)

  • Volume: 42, Issue: 4, page 691-709
  • ISSN: 0010-2628

Abstract

top
In this paper some embedding theorems related to fractional integration and differentiation in harmonic mixed norm spaces h ( p , q , α ) on the half-space are established. We prove that mixed norm is equivalent to a “fractional derivative norm” and that harmonic conjugation is bounded in h ( p , q , α ) for the range 0 < p , 0 < q . As an application of the above, we give a characterization of h ( p , q , α ) by means of an integral representation with the use of Besov spaces.

How to cite

top

Avetisyan, Karen L.. "Fractional integro-differentiation in harmonic mixed norm spaces on a half-space." Commentationes Mathematicae Universitatis Carolinae 42.4 (2001): 691-709. <http://eudml.org/doc/248800>.

@article{Avetisyan2001,
abstract = {In this paper some embedding theorems related to fractional integration and differentiation in harmonic mixed norm spaces $h(p,q,\alpha )$ on the half-space are established. We prove that mixed norm is equivalent to a “fractional derivative norm” and that harmonic conjugation is bounded in $h(p,q,\alpha )$ for the range $0<p\le \infty $, $0<q\le \infty $. As an application of the above, we give a characterization of $h(p,q,\alpha )$ by means of an integral representation with the use of Besov spaces.},
author = {Avetisyan, Karen L.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {embedding theorems; integral representations; conjugation; projections; mixed norm spaces; harmonic functions; fractional derivative; fractional integration},
language = {eng},
number = {4},
pages = {691-709},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Fractional integro-differentiation in harmonic mixed norm spaces on a half-space},
url = {http://eudml.org/doc/248800},
volume = {42},
year = {2001},
}

TY - JOUR
AU - Avetisyan, Karen L.
TI - Fractional integro-differentiation in harmonic mixed norm spaces on a half-space
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 4
SP - 691
EP - 709
AB - In this paper some embedding theorems related to fractional integration and differentiation in harmonic mixed norm spaces $h(p,q,\alpha )$ on the half-space are established. We prove that mixed norm is equivalent to a “fractional derivative norm” and that harmonic conjugation is bounded in $h(p,q,\alpha )$ for the range $0<p\le \infty $, $0<q\le \infty $. As an application of the above, we give a characterization of $h(p,q,\alpha )$ by means of an integral representation with the use of Besov spaces.
LA - eng
KW - embedding theorems; integral representations; conjugation; projections; mixed norm spaces; harmonic functions; fractional derivative; fractional integration
UR - http://eudml.org/doc/248800
ER -

References

top
  1. Benedek A., Panzone R., The spaces L P , with mixed norm, Duke Math. J. 28 (1961), 301-324. (1961) MR0126155
  2. Bergman S., Über unendliche Hermitische Formen, die zu einem Bereiche gehören, nebst Anwendungen auf Fragen der Abbildung durch Funktionen von zwei komplexen Veränderlichen, Math. Z. 29 (1929), 641-677. (1929) MR1545028
  3. Bergman S., The Kernel Function and Conformal Mapping, Math. Surveys, No. 5, New York, 1950. Zbl0473.30006MR0038439
  4. Bui Huy Qui, Harmonic functions, Riesz potentials, and the Lipschitz spaces of Herz, Hiroshima Math. J. 9 (1979), 245-295. (1979) MR0529335
  5. Djrbashian A.E., The classes A α p of harmonic functions in half-spaces and an analogue of M. Riesz’ theorem, Izv. Akad. Nauk Arm. SSR, Matematika 22 4 (1987), 386-398 (in Russian); English transl.: Soviet J. Contemp. Math. Anal. (Armenian Academy of Sciences) 22 (1987), no. 4, 74-85. (1987) MR0931892
  6. Djrbashian A.E., Karapetyan A.H., Integral inequalities between conjugate pluriharmonic functions in multidimensional domains, Izv. Akad. Nauk Arm. SSR, Matematika 23 (1988), 3 216-236 (in Russian); English transl.: Soviet J. Contemp. Math. Anal. (Armenian Academy of Sciences) 23 (1988), no. 3, 20-42. (1988) MR0976482
  7. Djrbashian A.E., Shamoyan F.A., Topics in the Theory of A α p Spaces, Teubner-Texte zur Math., b. 105, Teubner, Leipzig, 1988. MR1021691
  8. Djrbashian M.M., On canonical representation of functions meromorphic in the unit disk, Dokl. Akad. Nauk Arm. SSR 3 (1945), 3-9 (in Russian). (1945) 
  9. Djrbashian M.M., On the representation problem of analytic functions, Soobshch. Inst. Matem. Mekh. Akad. Nauk Arm. SSR 2 (1948), 3-40 (in Russian). (1948) 
  10. Djrbashian M.M., Djrbashian A.E., Integral representation for some classes of functions in a half-plane, Dokl. Akad. Nauk SSSR 285 (1985), 547-550 (in Russian). (1985) MR0821337
  11. Fefferman C., Stein E.M., H p spaces of several variables, Acta Math. 129 (1972), 137-193. (1972) MR0447953
  12. Flett T.M., Mean values of power series, Pacific J. Math. 25 (1968), 463-494. (1968) Zbl0162.10002MR0229807
  13. Flett T.M., Inequalities for the p th mean values of harmonic and subharmonic functions with p 1 , Proc. London Math. Soc. (3) 20 (1970), 249-275. (1970) MR0257387
  14. Flett T.M., On the rate of growth of mean values of holomorphic and harmonic functions, Proc. London Math. Soc. (3) 20 (1970), 749-768. (1970) Zbl0211.39203MR0268388
  15. Flett T.M., The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972), 746-765. (1972) Zbl0246.30031MR0304667
  16. Holmstedt T., Interpolation of quasi-normed spaces, Math. Scand. 26 (1970), 177-199. (1970) Zbl0193.08801MR0415352
  17. Ramey W.C., Yi H., Harmonic Bergman functions on half-spaces, Trans. Amer. Math. Soc. 348 (1996), 633-660. (1996) Zbl0848.31004MR1303125
  18. Ricci F., Taibleson M., Boundary values of harmonic functions in mixed norm spaces and their atomic structure, Annali Scuola Nor. Sup. - Pisa, Ser. IV, 10 (1983), 1-54. (1983) Zbl0527.30040MR0713108
  19. Shamoyan F.A., Applications of Djrbashian's integral representations to the certain problems of analysis, Dokl. Akad. Nauk SSSR 261 (1981), 3 557-561 (in Russian). (1981) MR0638930
  20. Shamoyan F.A., Some remarks on the parametric representation of Nevanlinna-Djrbashian classes, Mat. Zametki 52 (1992), 1 128-140 (in Russian); English transl.: Math. Notes 52 (1993), no. 1-2, 727-737. (1992) MR1187723
  21. Shi J.H., Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of n , Trans. Amer. Math. Soc. 328 (1991), 619-637. (1991) MR1016807
  22. Stein E.M., Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, New Jersey, 1970. Zbl0281.44003MR0290095
  23. Taibleson M., On the theory of Lipschitz spaces of distributions on Euclidean n -space, I. Principal properties, J. Math. Mech. 13 (1964), 407-479. (1964) MR0163159
  24. Yi H., Harmonic little Bloch functions on half-spaces, Math. Japonica 47 (1998), 21-28. (1998) Zbl0924.31003MR1606287
  25. Avetisyan K.L., Fractional integration and integral representations in weighted classes of harmonic functions, Analysis Math. 26 (2000), 161-174. (2000) Zbl0997.30030MR1792883

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.