The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
This paper focuses on the Diophantine equation , with fixed α, p, and M. We prove that, under certain conditions on M, this equation has no non-trivial integer solutions if , where is an effective constant. This generalizes Theorem 1.4 of the paper by Bennett, Vatsal and Yazdani [Compos. Math. 140 (2004), 1399-1416].
We consider the Diophantine equation , where B, D are integers (B ≠ ±2, D ≠ 0) and p is a prime >5. We give Kraus type criteria of nonsolvability for this equation (explicitly, for many B and D) in terms of Galois representations and modular forms. We apply these criteria to numerous equations (with B = 0, 1, 3, 4, 5, 6, specific D’s, and p ∈ (10,10⁶)). In the last section we discuss reductions of the above Diophantine equations to those of signature (p,p,2).
Download Results (CSV)