The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Embedding theorems for spaces of ℝ-places of rational function fields and their products

Katarzyna KuhlmannFranz-Viktor Kuhlmann — 2012

Fundamenta Mathematicae

We study spaces M(R(y)) of ℝ-places of rational function fields R(y) in one variable. For extensions F|R of formally real fields, with R real closed and satisfying a natural condition, we find embeddings of M(R(y)) in M(F(y)) and prove uniqueness results. Further, we study embeddings of products of spaces of the form M(F(y)) in spaces of ℝ-places of rational function fields in several variables. Our results uncover rather unexpected obstacles to a positive solution of the open question whether the...

On the dimension of the space of ℝ-places of certain rational function fields

We prove that for every n ∈ ℕ the space M(K(x 1, …, x n) of ℝ-places of the field K(x 1, …, x n) of rational functions of n variables with coefficients in a totally Archimedean field K has the topological covering dimension dimM(K(x 1, …, x n)) ≤ n. For n = 2 the space M(K(x 1, x 2)) has covering and integral dimensions dimM(K(x 1, x 2)) = dimℤ M(K(x 1, x 2)) = 2 and the cohomological dimension dimG M(K(x 1, x 2)) = 1 for any Abelian 2-divisible coefficient group G.

Page 1

Download Results (CSV)