Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Solutions to the equation div u = f in weighted Sobolev spaces

Katrin Schumacher — 2008

Banach Center Publications

We consider the problem div u = f in a bounded Lipschitz domain Ω, where f with Ω f = 0 is given. It is shown that the solution u, constructed as in Bogovski’s approach in [1], fulfills estimates in the weighted Sobolev spaces W w k , q ( Ω ) , where the weight function w is in the class of Muckenhoupt weights A q .

A chart preserving the normal vector and extensions of normal derivatives in weighted function spaces

Katrin Schumacher — 2009

Czechoslovak Mathematical Journal

Given a domain Ω of class C k , 1 , k , we construct a chart that maps normals to the boundary of the half space to normals to the boundary of Ω in the sense that ( - x n ) α ( x ' , 0 ) = - N ( x ' ) and that still is of class C k , 1 . As an application we prove the existence of a continuous extension operator for all normal derivatives of order 0 to k on domains of class C k , 1 . The construction of this operator is performed in weighted function spaces where the weight function is taken from the class of Muckenhoupt weights.

Page 1

Download Results (CSV)