Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Boundedness of solutions to parabolic-elliptic chemotaxis-growth systems with signal-dependent sensitivity

Kentarou FujieTomomi Yokota — 2014

Mathematica Bohemica

This paper deals with parabolic-elliptic chemotaxis systems with the sensitivity function χ ( v ) and the growth term f ( u ) under homogeneous Neumann boundary conditions in a smooth bounded domain. Here it is assumed that 0 < χ ( v ) χ 0 / v k ( k 1 , χ 0 > 0 ) and λ 1 - μ 1 u f ( u ) λ 2 - μ 2 u ( λ 1 , λ 2 , μ 1 , μ 2 > 0 ) . It is shown that if χ 0 is sufficiently small, then the system has a unique global-in-time classical solution that is uniformly bounded. This boundedness result is a generalization of a recent result by K. Fujie, M. Winkler, T. Yokota.

On behavior of solutions to a chemotaxis system with a nonlinear sensitivity function

Senba, TakasiFujie, Kentarou — 2017

Proceedings of Equadiff 14

In this paper, we consider solutions to the following chemotaxis system with general sensitivity τ u t = Δ u - · ( u χ ( v ) ) in Ω × ( 0 , ) , η v t = Δ v - v + u in Ω × ( 0 , ) , u ν = u ν = 0 on Ω × ( 0 , ) . Here, τ and η are positive constants, χ is a smooth function on ( 0 , ) satisfying χ ' ( · ) > 0 and Ω is a bounded domain of 𝐑 n ( n 2 ). It is well known that the chemotaxis system with direct sensitivity ( χ ( v ) = χ 0 v , χ 0 > 0 ) has blowup solutions in the case where n 2 . On the other hand, in the case where χ ( v ) = χ 0 log v with 0 < χ 0 1 , any solution to the system exists globally in time and is bounded. We present a sufficient condition for the boundedness of...

A generalization of the Keller-Segel system to higher dimensions from a structural viewpoint

Fujie, KentarouSenba, Takasi — 2017

Proceedings of Equadiff 14

We consider initial boundary problems of a two-chemical substances chemotaxis system. In the four-dimensional setting, it was shown that solutions exist globally in time and remain bounded if the total mass is less than ( 8 π ) 2 , whereas the solution emanating from some initial data of large magnitude may blows up. This result can be regarded as a generalization of the well-known 8 π problem in the Keller–Segel system to higher dimensions. We will compare mathematical structures of the Keller–Segel system...

Page 1

Download Results (CSV)