The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We discuss the existence of an orthogonal basis consisting of decomposable vectors for all symmetry classes of tensors associated with semi-dihedral groups . In particular, a necessary and sufficient condition for the existence of such a basis associated with and degree two characters is given.
We consider the problem of reconstructing an cell matrix constructed from a vector of positive real numbers, from a given set of spectral data. In addition, we show that the spectra of cell matrices and are the same for every permutation .
Download Results (CSV)