The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Inverse eigenvalue problem of cell matrices

Sreyaun KhimKijti Rodtes — 2019

Czechoslovak Mathematical Journal

We consider the problem of reconstructing an n × n cell matrix D ( x ) constructed from a vector x = ( x 1 , x 2 , , x n ) of positive real numbers, from a given set of spectral data. In addition, we show that the spectra of cell matrices D ( x ) and D ( π ( x ) ) are the same for every permutation π S n .

Page 1

Download Results (CSV)