Inverse eigenvalue problem of cell matrices

Sreyaun Khim; Kijti Rodtes

Czechoslovak Mathematical Journal (2019)

  • Volume: 69, Issue: 4, page 1015-1027
  • ISSN: 0011-4642

Abstract

top
We consider the problem of reconstructing an n × n cell matrix D ( x ) constructed from a vector x = ( x 1 , x 2 , , x n ) of positive real numbers, from a given set of spectral data. In addition, we show that the spectra of cell matrices D ( x ) and D ( π ( x ) ) are the same for every permutation π S n .

How to cite

top

Khim, Sreyaun, and Rodtes, Kijti. "Inverse eigenvalue problem of cell matrices." Czechoslovak Mathematical Journal 69.4 (2019): 1015-1027. <http://eudml.org/doc/294333>.

@article{Khim2019,
abstract = {We consider the problem of reconstructing an $n \times n$ cell matrix $D(\vec\{x\})$ constructed from a vector $\vec\{x\} = (x_\{1\}, x_\{2\},\dots , x_\{n\})$ of positive real numbers, from a given set of spectral data. In addition, we show that the spectra of cell matrices $D(\vec\{x\})$ and $D(\pi (\vec\{x\}))$ are the same for every permutation $\pi \in S_\{n\}$.},
author = {Khim, Sreyaun, Rodtes, Kijti},
journal = {Czechoslovak Mathematical Journal},
keywords = {cell matrix; inverse eigenvalue problem; Euclidean distance matrix},
language = {eng},
number = {4},
pages = {1015-1027},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Inverse eigenvalue problem of cell matrices},
url = {http://eudml.org/doc/294333},
volume = {69},
year = {2019},
}

TY - JOUR
AU - Khim, Sreyaun
AU - Rodtes, Kijti
TI - Inverse eigenvalue problem of cell matrices
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 1015
EP - 1027
AB - We consider the problem of reconstructing an $n \times n$ cell matrix $D(\vec{x})$ constructed from a vector $\vec{x} = (x_{1}, x_{2},\dots , x_{n})$ of positive real numbers, from a given set of spectral data. In addition, we show that the spectra of cell matrices $D(\vec{x})$ and $D(\pi (\vec{x}))$ are the same for every permutation $\pi \in S_{n}$.
LA - eng
KW - cell matrix; inverse eigenvalue problem; Euclidean distance matrix
UR - http://eudml.org/doc/294333
ER -

References

top
  1. Chu, M. T., 10.1137/S0036144596303984, SIAM Rev. 40 (1998), 1-39. (1998) Zbl0915.15008MR1612561DOI10.1137/S0036144596303984
  2. Chu, M. T., Golub, G. H., 10.1017/S0962492902000016, Acta Numerica 11 (2002), 1-71. (2002) Zbl1105.65326MR2008966DOI10.1017/S0962492902000016
  3. Gyamfi, K. B., Solution of Inverse Eigenvalue Problem of Certain Singular Hermitian Matrices, Doctoral dissertation, Kwame Nkrumah University of Science and Technology (2012). (2012) 
  4. Jaklič, G., Modic, J., 10.1016/j.amc.2010.03.032, Appl. Math. Comput. 216 (2010), 2016-2023. (2010) Zbl1203.15022MR2647070DOI10.1016/j.amc.2010.03.032
  5. Kurata, H., Tarazaga, P., 10.1016/j.laa.2015.07.030, Linear Algebra Appl. 485 (2015), 194-207. (2015) Zbl1323.15020MR3394144DOI10.1016/j.laa.2015.07.030
  6. Nazari, A. M., Mahdinasab, F., 10.1016/j.laa.2014.02.017, Linear Algebra Appl. 450 (2014), 202-216. (2014) Zbl1302.15016MR3192478DOI10.1016/j.laa.2014.02.017
  7. Radwan, N., 10.1016/0024-3795(95)00162-X, Linear Algebra Appl. 248 (1996), 101-109. (1996) Zbl0865.15008MR1416452DOI10.1016/0024-3795(95)00162-X
  8. Schoenberg, I. J., 10.1090/S0002-9947-1938-1501980-0, Trans. Am. Math. Soc. 44 (1938), 522-536. (1938) Zbl0019.41502MR1501980DOI10.1090/S0002-9947-1938-1501980-0
  9. Tarazaga, P., Kurata, H., 10.1016/j.amc.2014.04.026, Appl. Math. Comput. 238 (2014), 468-474. (2014) Zbl1334.15090MR3209649DOI10.1016/j.amc.2014.04.026
  10. Wang, Z., Zhong, B., 10.1155/2011/571781, Math. Probl. Eng. 2011 (2011), Article ID 571781, 11 pages. (2011) Zbl1235.15011MR2799869DOI10.1155/2011/571781

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.