Inverse eigenvalue problem of cell matrices
Czechoslovak Mathematical Journal (2019)
- Volume: 69, Issue: 4, page 1015-1027
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKhim, Sreyaun, and Rodtes, Kijti. "Inverse eigenvalue problem of cell matrices." Czechoslovak Mathematical Journal 69.4 (2019): 1015-1027. <http://eudml.org/doc/294333>.
@article{Khim2019,
abstract = {We consider the problem of reconstructing an $n \times n$ cell matrix $D(\vec\{x\})$ constructed from a vector $\vec\{x\} = (x_\{1\}, x_\{2\},\dots , x_\{n\})$ of positive real numbers, from a given set of spectral data. In addition, we show that the spectra of cell matrices $D(\vec\{x\})$ and $D(\pi (\vec\{x\}))$ are the same for every permutation $\pi \in S_\{n\}$.},
author = {Khim, Sreyaun, Rodtes, Kijti},
journal = {Czechoslovak Mathematical Journal},
keywords = {cell matrix; inverse eigenvalue problem; Euclidean distance matrix},
language = {eng},
number = {4},
pages = {1015-1027},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Inverse eigenvalue problem of cell matrices},
url = {http://eudml.org/doc/294333},
volume = {69},
year = {2019},
}
TY - JOUR
AU - Khim, Sreyaun
AU - Rodtes, Kijti
TI - Inverse eigenvalue problem of cell matrices
JO - Czechoslovak Mathematical Journal
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 1015
EP - 1027
AB - We consider the problem of reconstructing an $n \times n$ cell matrix $D(\vec{x})$ constructed from a vector $\vec{x} = (x_{1}, x_{2},\dots , x_{n})$ of positive real numbers, from a given set of spectral data. In addition, we show that the spectra of cell matrices $D(\vec{x})$ and $D(\pi (\vec{x}))$ are the same for every permutation $\pi \in S_{n}$.
LA - eng
KW - cell matrix; inverse eigenvalue problem; Euclidean distance matrix
UR - http://eudml.org/doc/294333
ER -
References
top- Chu, M. T., 10.1137/S0036144596303984, SIAM Rev. 40 (1998), 1-39. (1998) Zbl0915.15008MR1612561DOI10.1137/S0036144596303984
- Chu, M. T., Golub, G. H., 10.1017/S0962492902000016, Acta Numerica 11 (2002), 1-71. (2002) Zbl1105.65326MR2008966DOI10.1017/S0962492902000016
- Gyamfi, K. B., Solution of Inverse Eigenvalue Problem of Certain Singular Hermitian Matrices, Doctoral dissertation, Kwame Nkrumah University of Science and Technology (2012). (2012)
- Jaklič, G., Modic, J., 10.1016/j.amc.2010.03.032, Appl. Math. Comput. 216 (2010), 2016-2023. (2010) Zbl1203.15022MR2647070DOI10.1016/j.amc.2010.03.032
- Kurata, H., Tarazaga, P., 10.1016/j.laa.2015.07.030, Linear Algebra Appl. 485 (2015), 194-207. (2015) Zbl1323.15020MR3394144DOI10.1016/j.laa.2015.07.030
- Nazari, A. M., Mahdinasab, F., 10.1016/j.laa.2014.02.017, Linear Algebra Appl. 450 (2014), 202-216. (2014) Zbl1302.15016MR3192478DOI10.1016/j.laa.2014.02.017
- Radwan, N., 10.1016/0024-3795(95)00162-X, Linear Algebra Appl. 248 (1996), 101-109. (1996) Zbl0865.15008MR1416452DOI10.1016/0024-3795(95)00162-X
- Schoenberg, I. J., 10.1090/S0002-9947-1938-1501980-0, Trans. Am. Math. Soc. 44 (1938), 522-536. (1938) Zbl0019.41502MR1501980DOI10.1090/S0002-9947-1938-1501980-0
- Tarazaga, P., Kurata, H., 10.1016/j.amc.2014.04.026, Appl. Math. Comput. 238 (2014), 468-474. (2014) Zbl1334.15090MR3209649DOI10.1016/j.amc.2014.04.026
- Wang, Z., Zhong, B., 10.1155/2011/571781, Math. Probl. Eng. 2011 (2011), Article ID 571781, 11 pages. (2011) Zbl1235.15011MR2799869DOI10.1155/2011/571781
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.