Fixed points of condensing multivalued maps in topological vector spaces.
Let X be an infinite-dimensional real reflexive Banach space such that X and its dual X* are locally uniformly convex. Suppose that T: X⊃D(T) → 2X* is a maximal monotone multi-valued operator and C: X⊃D(C) → X* is a generalized pseudomonotone quasibounded operator with L ⊂ D(C), where L is a dense subspace of X. Applying a recent degree theory of Kartsatos and Skrypnik, we establish the existence of an eigensolution to the nonlinear inclusion 0 ∈ T x + λ C x, with a regularization method by means...
Introducing a topological degree theory, we first establish some existence results for the inclusion h ∈ Lu − Nu in the nonresonance and resonance cases, where L is a closed densely defined linear operator on a Hilbert space with a compact resolvent and N is a nonlinear multi-valued operator of monotone type. Using the nonresonance result, we next show that abstract semilinear system has a solution under certain conditions on N = (N1, N2), provided that L = (L1, L2) satisfies dim Ker L1 = ∞ and...
Page 1