The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Semiclassical resolvent estimates at trapped sets

Kiril DatchevAndrás Vasy — 2012

Annales de l’institut Fourier

We extend our recent results on propagation of semiclassical resolvent estimates through trapped sets when a priori polynomial resolvent bounds hold. Previously we obtained non-trapping estimates in trapping situations when the resolvent was sandwiched between cutoffs χ microlocally supported away from the trapping: χ R h ( E + i 0 ) χ = 𝒪 ( h - 1 ) , a microlocal version of a result of Burq and Cardoso-Vodev. We now allow one of the two cutoffs, χ ˜ , to be supported at the trapped set, giving χ R h ( E + i 0 ) χ ˜ = 𝒪 ( a ( h ) h - 1 ) when the a priori bound is χ ˜ R h ( E + i 0 ) χ ˜ = 𝒪 ( a ( h ) h - 1 ) .

Propagation through trapped sets and semiclassical resolvent estimates

Kiril DatchevAndrás Vasy — 2012

Annales de l’institut Fourier

Motivated by the study of resolvent estimates in the presence of trapping, we prove a semiclassical propagation theorem in a neighborhood of a compact invariant subset of the bicharacteristic flow which is isolated in a suitable sense. Examples include a global trapped set and a single isolated periodic trajectory. This is applied to obtain microlocal resolvent estimates with no loss compared to the nontrapping setting.

Page 1

Download Results (CSV)