The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Edgeless graphs are the only universal fixers

Kirsti Wash — 2014

Czechoslovak Mathematical Journal

Given two disjoint copies of a graph G , denoted G 1 and G 2 , and a permutation π of V ( G ) , the graph π G is constructed by joining u V ( G 1 ) to π ( u ) V ( G 2 ) for all u V ( G 1 ) . G is said to be a universal fixer if the domination number of π G is equal to the domination number of G for all π of V ( G ) . In 1999 it was conjectured that the only universal fixers are the edgeless graphs. Since then, a few partial results have been shown. In this paper, we prove the conjecture completely.

Worm Colorings

Wayne GoddardKirsti WashHonghai Xu — 2015

Discussiones Mathematicae Graph Theory

Given a coloring of the vertices, we say subgraph H is monochromatic if every vertex of H is assigned the same color, and rainbow if no pair of vertices of H are assigned the same color. Given a graph G and a graph F, we define an F-WORM coloring of G as a coloring of the vertices of G without a rainbow or monochromatic subgraph H isomorphic to F. We present some results on this concept especially as regards to the existence, complexity, and optimization within certain graph classes. The focus is...

2-Tone Colorings in Graph Products

Jennifer LoeDanielle MiddelbrooksAshley MorrisKirsti Wash — 2015

Discussiones Mathematicae Graph Theory

A variation of graph coloring known as a t-tone k-coloring assigns a set of t colors to each vertex of a graph from the set {1, . . . , k}, where the sets of colors assigned to any two vertices distance d apart share fewer than d colors in common. The minimum integer k such that a graph G has a t- tone k-coloring is known as the t-tone chromatic number. We study the 2-tone chromatic number in three different graph products. In particular, given graphs G and H, we bound the 2-tone chromatic number...

Page 1

Download Results (CSV)