A partial classification result for noncommutative tori.
We give necessary and sufficient conditions for a language to be the language of finite words that occur infinitely many times in an infinite word.
Results of T. Fack, P. de la Harpe and G. Skandalis concerning the internal structure of simple -algebras are extended to -algebras that are inductive limits of finite direct sums of homogeneous -algebras. The generalizations are obtained with slightly varying assumptions on the building blocks, but all results are applicable to unital simple inductive limits of finite direct sums of circle algebras.
We associate a -algebra to a locally compact Hausdorff groupoid with the property that the range map is locally injective. The construction generalizes J. Renault’s reduced groupoid -algebra of an étale groupoid and has the advantage that it works for the groupoid arising from a locally injective dynamical system by the method introduced in increasing generality by Renault, Deaconu and Anantharaman-Delaroche. We study the -algebras of such groupoids and give necessary and sufficient conditions...
We give necessary and sufficient conditions for a language to be the language of finite words that occur infinitely many times in an infinite word.
Page 1