An elementary proof of the Mazur-Tate-Teitelbaum conjecture for elliptic curves.
In this paper, we give an explicit description of the de Rham and -adic polylogarithms for elliptic curves using the Kronecker theta function. In particular, consider an elliptic curve defined over an imaginary quadratic field with complex multiplication by the full ring of integers of . Note that our condition implies that has class number one. Assume in addition that has good reduction above a prime unramified in . In this case, we prove that the specializations of the -adic elliptic...
Page 1