On the de Rham and -adic realizations of the elliptic polylogarithm for CM elliptic curves
Kenichi Bannai; Shinichi Kobayashi; Takeshi Tsuji
Annales scientifiques de l'École Normale Supérieure (2010)
- Volume: 43, Issue: 2, page 185-234
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topBannai, Kenichi, Kobayashi, Shinichi, and Tsuji, Takeshi. "On the de Rham and $p$-adic realizations of the elliptic polylogarithm for CM elliptic curves." Annales scientifiques de l'École Normale Supérieure 43.2 (2010): 185-234. <http://eudml.org/doc/272129>.
@article{Bannai2010,
abstract = {In this paper, we give an explicit description of the de Rham and $p$-adic polylogarithms for elliptic curves using the Kronecker theta function. In particular, consider an elliptic curve $E$ defined over an imaginary quadratic field $\mathbb \{K\}$ with complex multiplication by the full ring of integers $\mathcal \{O\}_\mathbb \{K\}$ of $\mathbb \{K\}$. Note that our condition implies that $\mathbb \{K\}$ has class number one. Assume in addition that $E$ has good reduction above a prime $p \ge 5$ unramified in $\mathcal \{O\}_\mathbb \{K\}$. In this case, we prove that the specializations of the $p$-adic elliptic polylogarithm to torsion points of $E$ of order prime to $p$ are related to $p$-adic Eisenstein-Kronecker numbers. Our result is valid even if $E$ has supersingular reduction at $p$. This is a $p$-adic analogue in a special case of the result of Beilinson and Levin, expressing the Hodge realization of the elliptic polylogarithm in terms of Eisenstein-Kronecker-Lerch series. When $p$ is ordinary, then we relate the $p$-adic Eisenstein-Kronecker numbers to special values of $p$-adic $L$-functions associated to certain Hecke characters of $\mathbb \{K\}$.},
author = {Bannai, Kenichi, Kobayashi, Shinichi, Tsuji, Takeshi},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {elliptic curves; complex multiplication; elliptic polylogarithms; $p$-adic $L$-functions},
language = {eng},
number = {2},
pages = {185-234},
publisher = {Société mathématique de France},
title = {On the de Rham and $p$-adic realizations of the elliptic polylogarithm for CM elliptic curves},
url = {http://eudml.org/doc/272129},
volume = {43},
year = {2010},
}
TY - JOUR
AU - Bannai, Kenichi
AU - Kobayashi, Shinichi
AU - Tsuji, Takeshi
TI - On the de Rham and $p$-adic realizations of the elliptic polylogarithm for CM elliptic curves
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2010
PB - Société mathématique de France
VL - 43
IS - 2
SP - 185
EP - 234
AB - In this paper, we give an explicit description of the de Rham and $p$-adic polylogarithms for elliptic curves using the Kronecker theta function. In particular, consider an elliptic curve $E$ defined over an imaginary quadratic field $\mathbb {K}$ with complex multiplication by the full ring of integers $\mathcal {O}_\mathbb {K}$ of $\mathbb {K}$. Note that our condition implies that $\mathbb {K}$ has class number one. Assume in addition that $E$ has good reduction above a prime $p \ge 5$ unramified in $\mathcal {O}_\mathbb {K}$. In this case, we prove that the specializations of the $p$-adic elliptic polylogarithm to torsion points of $E$ of order prime to $p$ are related to $p$-adic Eisenstein-Kronecker numbers. Our result is valid even if $E$ has supersingular reduction at $p$. This is a $p$-adic analogue in a special case of the result of Beilinson and Levin, expressing the Hodge realization of the elliptic polylogarithm in terms of Eisenstein-Kronecker-Lerch series. When $p$ is ordinary, then we relate the $p$-adic Eisenstein-Kronecker numbers to special values of $p$-adic $L$-functions associated to certain Hecke characters of $\mathbb {K}$.
LA - eng
KW - elliptic curves; complex multiplication; elliptic polylogarithms; $p$-adic $L$-functions
UR - http://eudml.org/doc/272129
ER -
References
top- [1] M. Abramowitz & I. A. Stegun (éds.), Weierstrass elliptic and related functions, Ch. 18, in Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications Inc., 1992, p. 627–671. Zbl0643.33001MR1225604
- [2] F. Baldassarri & B. Chiarellotto, Algebraic versus rigid cohomology with logarithmic coefficients, in Barsotti Symposium in Algebraic Geometry (Abano Terme, 1991), Perspect. Math. 15, Academic Press, 1994, 11–50. Zbl0833.14010MR1307391
- [3] K. Bannai, Rigid syntomic cohomology and -adic polylogarithms, J. reine angew. Math. 529 (2000), 205–237. Zbl1006.19002MR1799937
- [4] K. Bannai, On the -adic realization of elliptic polylogarithms for CM-elliptic curves, Duke Math. J.113 (2002), 193–236. Zbl1019.11018MR1909217
- [5] K. Bannai & G. Kings, -adic elliptic polylogarithm, -adic Eisenstein series and Katz measure, preprint arXiv:0707.3747, to appear in Amer. J. Math. Zbl1225.11075MR2766179
- [6] K. Bannai & S. Kobayashi, Algebraic theta functions and -adic interpolation of Eisenstein-Kronecker numbers, preprint arXiv:math.NT/0610163, to appear in Duke Math. J. Zbl1205.11076MR2667134
- [7] A. Beĭlinson & A. Levin, The elliptic polylogarithm, in Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math. 55, Amer. Math. Soc., 1994, 123–190. Zbl0817.14014MR1265553
- [8] P. Berthelot, Géométrie rigide et cohomologie des variétés algébriques de caractéristique , Mém. Soc. Math. France (N.S.) 23 (1986), 7–32. Zbl0606.14017MR865810
- [9] P. Berthelot, Cohomologie rigide et cohomologie rigide à support propre, première partie, preprint IRMAR 96-03, 1996.
- [10] P. Berthelot, Finitude et pureté cohomologique en cohomologie rigide, Invent. Math.128 (1997), 329–377. Zbl0908.14005MR1440308
- [11] J. L. Boxall, A new construction of -adic -functions attached to certain elliptic curves with complex multiplication, Ann. Inst. Fourier (Grenoble) 36 (1986), 31–68. Zbl0608.14015MR867915
- [12] J. L. Boxall, -adic interpolation of logarithmic derivatives associated to certain Lubin-Tate formal groups, Ann. Inst. Fourier (Grenoble) 36 (1986), 1–27. Zbl0587.12007MR865657
- [13] P. Colmez, Fonctions -adiques, Séminaire Bourbaki, vol. 1998/99, exposé no 851, Astérisque 266 (2000), 21–58. Zbl0964.11055MR1772669
- [14] R. M. Damerell, -functions of elliptic curves with complex multiplication. I, Acta Arith. 17 (1970), 287–301. Zbl0209.24603
- [15] R. M. Damerell, -functions of elliptic curves with complex multiplication. II, Acta Arith. 19 (1971), 311–317. Zbl0229.12015
- [16] J.-M. Fontaine, Modules galoisiens, modules filtrés et anneaux de Barsotti-Tate, in Journées de Géométrie Algébrique de Rennes. (Rennes, 1978), Vol. III, Astérisque 65, Soc. Math. France, 1979, 3–80. Zbl0429.14016
- [17] A. Huber & G. Kings, Degeneration of -adic Eisenstein classes and of the elliptic polylog, Invent. Math.135 (1999), 545–594. Zbl0955.11027
- [18] A. Huber & J. Wildeshaus, Classical motivic polylogarithm according to Beilinson and Deligne, Doc. Math. 3 (1998), 27–133; correction: idem, 297–299. Zbl0906.19004
- [19] N. M. Katz, -adic interpolation of real analytic Eisenstein series, Ann. of Math.104 (1976), 459–571. Zbl0354.14007
- [20] A. Levin, Elliptic polylogarithms: an analytic theory, Compositio Math.106 (1997), 267–282. Zbl0905.11028
- [21] A. Levin & G. Racinet, Towards multiple elliptic polylogarithm, preprint arXiv:math/0703237.
- [22] J. I. Manin & M. M. Višik, -adic Hecke series of imaginary quadratic fields, Mat. Sb. (N.S.) 95 (1974), 357–383. Zbl0352.12013
- [23] P. Monsky & G. Washnitzer, Formal cohomology. I, Ann. of Math. 88 (1968), 181–217. Zbl0162.52504
- [24] B. Perrin-Riou, Fonctions -adiques des représentations -adiques, Astérisque 229 (1995). Zbl0845.11040
- [25] P. Schneider & J. Teitelbaum, -adic Fourier theory, Doc. Math.6 (2001), 447–481. Zbl1028.11069MR1871671
- [26] E. de Shalit, Iwasawa theory of elliptic curves with complex multiplication, Perspectives in Mathematics 3, Academic Press Inc., 1987. Zbl0674.12004MR917944
- [27] A. Shiho, Crystalline fundamental groups. II. Log convergent cohomology and rigid cohomology, J. Math. Sci. Univ. Tokyo 9 (2002), 1–163. Zbl1057.14025MR1889223
- [28] N. Solomon, -adic elliptic polylogarithms and arithmetic applications, Thèse, Ben-Gurion University, 2009.
- [29] N. Tsuzuki, On base change theorem and coherence in rigid cohomology, Doc. Math. extra vol. (2003), 891–918. Zbl1093.14503MR2046617
- [30] A. Weil, Elliptic functions according to Eisenstein and Kronecker, Ergebn. Math. Grenzg. 88, Springer, 1976. Zbl0318.33004MR562289
- [31] E. Weisstein, Weierstrass sigma function, http://mathworld.wolfram.com/WeierstrassSigmaFunction.html.
- [32] J. Wildeshaus, Realizations of polylogarithms, Lecture Notes in Math. 1650, Springer, 1997. Zbl0877.11001MR1482233
- [33] S. Yamamoto, On -adic -functions for CM elliptic curves at supersingular primes, Mémoire, University of Tokyo, 2002.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.