Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Moduli Spaces of PU ( 2 ) -Instantons on Minimal Class VII Surfaces with b 2 = 1

Konrad Schöbel — 2008

Annales de l’institut Fourier

We describe explicitly the moduli spaces g pst ( S , E ) of polystable holomorphic structures with det 𝒦 on a rank two vector bundle E with c 1 ( E ) = c 1 ( K ) and c 2 ( E ) = 0 for all minimal class VII surfaces S with b 2 ( S ) = 1 and with respect to all possible Gauduchon metrics g . These surfaces S are non-elliptic and non-Kähler complex surfaces and have recently been completely classified. When S is a half or parabolic Inoue surface, g pst ( S , E ) is always a compact one-dimensional complex disc. When S is an Enoki surface, one obtains a complex disc with finitely...

Page 1

Download Results (CSV)