We consider a problem of intervals raised by I. Ya. Novikov in [Israel Math. Conf. Proc. 5 (1992), 290], which refines the well-known theorem of J. Marcinkiewicz concerning structure of closed sets [A. Zygmund, Trigonometric Series, Vol. I, Ch. IV, Theorem 2.1]. A positive solution to the problem for some specific cases is obtained. As a result, we strengthen the theorem of Marcinkiewicz for generalized Cantor sets.
Some new examples of K-monotone couples of the type (X,X(w)), where X is a symmetric space on [0,1] and w is a weight on [0,1], are presented. Based on the property of w-decomposability of a symmetric space we show that, if a weight w changes sufficiently fast, all symmetric spaces X with non-trivial Boyd indices such that the Banach couple (X,X(w)) is K-monotone belong to the class of ultrasymmetric Orlicz spaces. If, in addition, the fundamental function of X is for some p ∈ [1,∞], then . At...
Download Results (CSV)