A common framework for analyzing the global convergence of several flows for principal component analysis is developed. It is shown that flows proposed by Brockett, Oja, Xu and others are all gradient flows and the global convergence of these flows to single equilibrium points is established. The signature of the Hessian at each critical point is determined.
In this paper we examine some features of the global dynamics of the four-dimensional system created by Lou, Ruggeri and Ma in 2007 which describes the behavior of the AIDS-related cancer dynamic model in vivo. We give upper and lower ultimate bounds for concentrations of cell populations and the free HIV-1 involved in this model. We show for this dynamics that there is a positively invariant polytope and we find a few surfaces containing omega-limit sets for positive half trajectories in the positive...
Download Results (CSV)