A double eigenvalue problem for Schrödinger equations involving sublinear nonlinearities at infinity.
Let (M,g) be a compact Riemannian manifold without boundary, with dim M ≥ 3, and f: ℝ → ℝ a continuous function which is sublinear at infinity. By various variational approaches, existence of multiple solutions of the eigenvalue problem , σ ∈ M, ω ∈ H₁²(M), is established for certain eigenvalues λ > 0, depending on further properties of f and on explicit forms of the function K̃. Here, stands for the Laplace-Beltrami operator on (M,g), and α, K̃ are smooth positive functions. These multiplicity...
Page 1