Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Sublinear eigenvalue problems on compact Riemannian manifolds with applications in Emden-Fowler equations

Alexandru KristályVicenţiu Rădulescu — 2009

Studia Mathematica

Let (M,g) be a compact Riemannian manifold without boundary, with dim M ≥ 3, and f: ℝ → ℝ a continuous function which is sublinear at infinity. By various variational approaches, existence of multiple solutions of the eigenvalue problem - Δ g ω + α ( σ ) ω = K ̃ ( λ , σ ) f ( ω ) , σ ∈ M, ω ∈ H₁²(M), is established for certain eigenvalues λ > 0, depending on further properties of f and on explicit forms of the function K̃. Here, Δ g stands for the Laplace-Beltrami operator on (M,g), and α, K̃ are smooth positive functions. These multiplicity...

Page 1

Download Results (CSV)