The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The aim of the paper is to investigate the structure of disjoint iteration groups on the unit circle , that is, families of homeomorphisms such that
and each either is the identity mapping or has no fixed point ( is an arbitrary -divisible nontrivial (i.e., ) abelian group).
Let be a disjoint iteration group on the unit circle , that is a family of homeomorphisms such that for , and each either is the identity mapping or has no fixed point ( is a -divisible nontrivial Abelian group). Denote by the set of all cluster points of , for . In this paper we give a general construction of disjoint iteration groups for which .
In this paper, recent results on the existence and uniqueness of (continuous and homeomorphic) solutions φ of the equation φ ∘ f = g ∘ φ (f and g are given self-maps of an interval or the circle) are surveyed. Some applications of these results as well as the outcomes concerning systems of such equations are also presented.
Download Results (CSV)