The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let A be a complex Banach algebra with a unit e, let T, φ be continuous functionals, where T is linear, and let F be a nonlinear entire function. If T ∘ F = F ∘ φ and T(e) = 1 then T is multiplicative.
Let A be a complex Banach algebra with a unit e, let F be a nonconstant entire function, and let T be a linear functional with T(e)=1 and such that T∘F: A → ℂ is nonsurjective. Then T is multiplicative.
A linear functional F on a Banach algebra A is almost multiplicative if |F(ab) - F(a)F(b)| ≤ δ∥a∥ · ∥b∥ for a,b ∈ A, for a small constant δ. An algebra is called functionally stable or f-stable if any almost multiplicative functional is close to a multiplicative one. The question whether an algebra is f-stable can be interpreted as a question whether A lacks an almost corona, that is, a set of almost multiplicative functionals far from the set of multiplicative functionals. In this paper we discuss...
The classical Riemann Mapping Theorem states that a nontrivial simply connected domain Ω in ℂ is holomorphically homeomorphic to the open unit disc 𝔻. We also know that "similar" one-dimensional Riemann surfaces are "almost" holomorphically equivalent.
We discuss the same problem concerning "similar" domains in ℂⁿ in an attempt to find a multidimensional quantitative version of the Riemann Mapping Theorem
We investigate stability of various classes of topological algebras and individual algebras under small deformations of multiplication.
We prove that a biseparating map between spaces of vector-valued continuous functions is usually automatically continuous. However, we also discuss special cases when this is not true.
We show that a real Banach algebra A such that ||a²|| = ||a||² for a ∈ A is a subalgebra of the algebra of continuous quaternion-valued functions on a compact set X.
We characterize unital topological algebras in which all maximal two-sided ideals are closed.
Download Results (CSV)