Let A be a complex Banach algebra with a unit e, let T, φ be continuous functionals, where T is linear, and let F be a nonlinear entire function. If T ∘ F = F ∘ φ and T(e) = 1 then T is multiplicative.
Let A be a complex Banach algebra with a unit e, let F be a nonconstant entire function, and let T be a linear functional with T(e)=1 and such that T∘F: A → ℂ is nonsurjective. Then T is multiplicative.
A linear functional F on a Banach algebra A is almost multiplicative if |F(ab) - F(a)F(b)| ≤ δ∥a∥ · ∥b∥ for a,b ∈ A, for a small constant δ. An algebra is called functionally stable or f-stable if any almost multiplicative functional is close to a multiplicative one. The question whether an algebra is f-stable can be interpreted as a question whether A lacks an almost corona, that is, a set of almost multiplicative functionals far from the set of multiplicative functionals. In this paper we discuss...
The classical Riemann Mapping Theorem states that a nontrivial simply connected domain Ω in ℂ is holomorphically homeomorphic to the open unit disc 𝔻. We also know that "similar" one-dimensional Riemann surfaces are "almost" holomorphically equivalent.
We discuss the same problem concerning "similar" domains in ℂⁿ in an attempt to find a multidimensional quantitative version of the Riemann Mapping Theorem
We investigate stability of various classes of topological algebras and individual algebras under small deformations of multiplication.
We prove that a biseparating map between spaces of vector-valued continuous functions is usually automatically continuous. However, we also discuss special cases when this is not true.
We show that a real Banach algebra A such that ||a²|| = ||a||² for a ∈ A is a subalgebra of the algebra of continuous quaternion-valued functions on a compact set X.
We characterize unital topological algebras in which all maximal two-sided ideals are closed.
Download Results (CSV)